Skip to main content
Log in

Stochastic dislocation patterning during cyclic plastic deformation

A theory of the formation of persistent slip band and matrix structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A dislocation dynamical theory is developed for the formation of dipole dislocation patterns during cyclic plastic deformation in single glide. The stochastic dislocation dynamics adopted is suitable to account, in terms of a fluctuating effective medium, for the effects of long-range dislocation interactions on a mesoscopic scale. The theory can explain the occurrence of a matrix structure and persistent slip bands as a result of evolutionary processes, it gives the intrinsic strain amplitudes and the characteristic wavelength of these structures, and it allows for an interpretation of the structural changes associated with changes of the deformation conditions. Quantitative results are in good agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh: InTreatise in Materials Science and Technology, Vol. 6, ed. by H. Mughrabi (VCH, Weinheim 1993) p. 509

    Google Scholar 

  2. T. Magnin, C. Ramade, J. Lepinoux, L.P. Kubin: Mater. Sci. Eng. A118, 41 (1989)

    Google Scholar 

  3. L.P. Kubin: InTreatise in Materials Science and Technology, Vol. 6, ed. by H. Mughrabi (VCH, Weinheim (1993) p. 137

    Google Scholar 

  4. U. Holzwarth, U. Essmann: J. Appl. Phys. A57, 131 (1993)

    Google Scholar 

  5. M. Wilkens, K. Herz, H. Mughrabi: Z. Metallkde.71, 376 (1980)

    Google Scholar 

  6. H. Mughrabi, F. Ackermann, K. Herz: InFatigue Mechanisms, ASTM Special Technical Publication No. 675, ed. by J.F. Fong (American Society for Testing and Materials, Philadelphia, PA 1979) p. 69

    Google Scholar 

  7. H. Mughrabi: InDislocations and Properties of Real Materials, Book No. 323 (The Institute of Metals, London 1985) p. 244

    Google Scholar 

  8. Z.S. Basinski, S.J. Basinski: Prog. Mater. Sci.36, 89 (1992)

    Google Scholar 

  9. A.T. Winter: Philos. Mag.30, 719 (1974)

    Google Scholar 

  10. U. Essmann, K. Differt: Mater. Sci. Eng. A (in press)

  11. C. Laird, P. Charsley, H. Mughrabi: Mater. Sci. Eng.81, 433 (1986)

    Google Scholar 

  12. P. Neumann: Mater. Sci. Eng.81, 465 (1986)

    Google Scholar 

  13. D. Walgraef, E.C. Aifantis: Int. J. Eng. Sci.23, 1351, 1359, 1365 (1985)

    Google Scholar 

  14. E.C. Aifantis: Solid State Phenom.3&4, 397 (1988)

    Google Scholar 

  15. J.M. Salazar,R. Fournet, N. Banai: Acta Metall. Mater.43, 1127 (1995)

    Google Scholar 

  16. J. Kratochvil: Rev. Phys. Appl.23, 419 (1988)

    Google Scholar 

  17. A. Franek, R. Kalus, J. Kratochvil: Philos. Mag. A64, 497 (1991)

    Google Scholar 

  18. P. Hähner: Appl. Phys. A62, 473–481 (1996)

    Google Scholar 

  19. P. Hähner: InProc. 8th Int'l Symp. on Continuum Models and Discrete Systems, ed. by K.Z. Markov (World Scientific, Singapore 1996) p. 514

    Google Scholar 

  20. M. Wilkens: Acta Metall.17, 1155 (1969)

    Google Scholar 

  21. P. Hähner, M. Zaiser: Acta Metall. Mater. (submitted)

  22. U. Essmann, H. Mughrabi: Philos. Mag. A40, 731 (1979)

    Google Scholar 

  23. U. Essmann: InBasic Mechanisms in Fatigue, ed. by P. Lukac, J. Polak (Elsevier, Amsterdam 1988) p. 433

    Google Scholar 

  24. P. Hähner: Scripta Mater.34, 435 (1996)

    Google Scholar 

  25. W. Horsthemke, R. Lefever:Noise-Induced Transitions, Springer Ser. Syn., Vol. 15 (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  26. J.R. Hancock, J.C. Grosskreutz: Acta Metall.17, 77 (1969)

    Google Scholar 

  27. K. Mecke, C. Blochwitz, U. Kremling: Cryst. Res. Technol.17, 1557 (1982)

    Google Scholar 

  28. N.Y. Jin: Acta Metall.37, 2055 (1989)

    Google Scholar 

  29. H. Mughrabi: Mater. Sci. Eng.33, 207 (1978)

    Google Scholar 

  30. U. Holzwarth, U. Essmann: J. Appl. Phys. A58, 197 (1994)

    Google Scholar 

  31. U. Holzwarth, U. Essmann: Philos. Mag. Lett.70, 75 (1994)

    Google Scholar 

  32. Z.S. Basinski, A.S. Korbel, S.J. Basinski: Acta Metall.28, 191 (1980)

    Google Scholar 

  33. U. Holzwarth, P. Hähner: Philos. Mag. A72, 691 (1995)

    Google Scholar 

  34. U. Holzwarth, U. Essmann: Mater. Sci. Eng. A164, 206 (1993)

    Google Scholar 

  35. K. Differt, U. Essmann: Mater. Sci. Eng. A164, 295 (1993)

    Google Scholar 

  36. N.Y. Jin, A.T. Winter: InBasic Questions in Fatigue, Vol. 1, ASTM Special Tech. Publication No. 924, ed by. J.T. Fong, R.J. Fields (American Society for Testing and Materials, Philadelphia, PA 1988) p. 17

    Google Scholar 

  37. J. Lépinoux, L.P. Kubin: Philos. Mag. A54, 631 (1986)

    Google Scholar 

  38. H. Mughrabi: Phys. Stat. Sol. (a)104, 107 (1987)

    Google Scholar 

  39. O.B. Pedersen, L.M. Brown, W.M. Stobbs: Acta Metall.29, 1843 (1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hähner, P. Stochastic dislocation patterning during cyclic plastic deformation. Appl. Phys. A 63, 45–55 (1996). https://doi.org/10.1007/BF01579745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01579745

PACS

Navigation