Skip to main content
Log in

Influence of the incorporation of cholesterol on the doubling time and on the arrhenius and hill plots of two membrane-bound enzymes ofEscherichia coli K12

  • Published:
Current Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Escherichia coli was grown at 37°C with increasing cholesterol concentrations in the growth medium. Under these conditions, it was shown that neither the phospholipid species nor the fatty acid composition were affected by the incorporation of cholesterol. On the other hand, the doubling time (td) was increased; two membrane-bound enzymes, (Ca++)-ATPase and D-lactate-dehydrogenase, were modified in the temperature-dependence activities, and the (Ca±±)-ATPase changed its Hill coefficient for the inhibition by Na+. This last parameter was the most sensitive in detecting very low cholesterol incorporations to the cytoplasmic membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Bartiett, G. R. 1959. Colorimetric assay methods for free and phosphorilated gliceric acids. Journal of Biological Chemistry234:469–471.

    Google Scholar 

  2. Cronan, E. J., Vagelos, P. R. 1972. Metabolism and function of the membrane phospholipids ofEscherichia coli. Biochimica et Biophysica Acta265:25–60.

    Google Scholar 

  3. Dahl, J. S., Dahl, C. E., Bloch, K. 1980. Sterols in membranes: growth characteristics and membrane properties ofMycoplasma caprycolum cultured in cholesterol and lanosterol. Biochemistry19:1467–1472.

    Google Scholar 

  4. De Kruyff, B., Demel, R. A., Van Deenen, L. L. M. 1972. The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase of transition of intactAcholeplasma laidlawii cell membranes and derived liposomes. Biochimica et Biophysica Acta255:331–347.

    Google Scholar 

  5. De Kruyff, B., Dijck, P. M., Demel, R. A., Schuijff, A., Brandts, F., Van Deenen, L. L. M. 1974. Non-random distribution of cholesterol in phosphatidylcholine bilayers. Biochimica et Biophysica Acta356:1–7.

    Google Scholar 

  6. Eaton, L. C., Erdos, G. W., Vreeland, N. L., Ingram, L. O. 1981. Failure ofEscherichia coli to alter its fatty acid composition in response to cholesterol-induced changes in membrane fluidity. Journal of Bacteriology146:1151–1153.

    Google Scholar 

  7. Evans, D. S., Jr. 1969. Membrane adenosine triphosphatase ofEscherichia coli, activation by calcium ion and inhibition by monovalent cations. Journal of Bacteriology100:914–922.

    Google Scholar 

  8. Farias, R. N. 1980. Membrane cooperative enzymes as a tool for the investigation of membrane structure and related phenomena. Ad. Lipid Res.17:251–288.

    Google Scholar 

  9. Farias, R. N., Bloj, B., Morero, R. D., Siñeriz, F., Trucco, R. E. 1975. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition. Biochimica et Biophysica Acta415:231–251.

    Google Scholar 

  10. Gramble, W., Vaugham, M., Kruth, H. S., Avigan, S. 1978. Procedure for the determination of free and total cholesterol in micro or nanogram amounts suitable for studies with cultured cells. Journal of Lipid Research19:1068–1072.

    Google Scholar 

  11. Kates, M. 1972. Analysis, isolation and identification of lipids. pp. 347–353. In: Work, T. S., Work, E. (eds.), Laboratory techniques in biochemistry and molecular biology. Amsterdam: North Holland Publishing Co.

    Google Scholar 

  12. Kroes, J., Ostwald, R., Keith, A. 1972. Erythrocyte membranes. Compression of lipid phases by increased cholesterol content. Biochimica et Biophysica Acta274:71–82.

    Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. I., Randall, R. J. 1951. Protein measurement with the Folinphenol reagent. Journal of Biological Chemistry193:265–275.

    Google Scholar 

  14. MacIntyre, S., Trust, J. T., Buckley, J. T. 1979. Distribution of glycerophospholipid cholesterol acyltransferase in selected bacterial species. Journal of Bacteriology139:132–136.

    Google Scholar 

  15. Mahendra, K. J. 1975. Role of cholesterol in biomembranes and related systems. Current Topics in Membrane Transport6:1–37.

    Google Scholar 

  16. Moreno, H., Siñeriz, F., Farias, R. N. 1974. Heterotropic “macro effector” for the cooperative behavior of Ca++-ATPase ofEscherichia coli. Journal of Biological Chemistry.249:7701–7706.

    Google Scholar 

  17. Osborn, M. J., Gander, J. E., Parisi, R., Parson, J. 1972. Mechanism of assembly of the outer membrane ofSalmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. Journal of Biological Chemistry247:3962–3972.

    Google Scholar 

  18. Pluschke, G., Hirota, Y., Overath, P. 1978. Function of phospholipids inEscherichia coli Characterization of cytoplasmic and outer membrane. Journal of Biological Chemistry253:5048–5055.

    Google Scholar 

  19. Raetz, E. R. H. 1978. Membrane lipids ofEscherichia coli. Microbiological Review48:609–659.

    Google Scholar 

  20. Razin, S. 1975. Cholesterol incorporation into bacterial membranes. Journal of Bacteriology124:570–572.

    Google Scholar 

  21. Rottem, S., Yasnow, J., Ne'eman, Z., Razin S. 1973. Cholesterol in mycoplasma membranes. Composition, ultrastructure and biological properties of membranes fromMycoplasma mycoides var. Capri cells adapted to grow with low cholesterol concentrations. Biochimica et Biophysica Acta323:495–508.

    Google Scholar 

  22. Rintoul, D. A., Shun-Mei Chou, Silbert, D. F. 1979. Physical characterization of sterol-depleted LM-cell plasma membranes. Journal of Biological Chemistry254:10070–10077.

    Google Scholar 

  23. Sanderman, H., Jr. 1978. Regulation of membrane enzymes by lipids. Biochimica et Biophysica Acta515:209–237.

    Google Scholar 

  24. Satindra, K. G., Frey F. 1971. Spray detection of phospholipids in thin layer chromatograms. Journal of Lipid Research12:509–510.

    Google Scholar 

  25. Siñeriz, F., Bloj, B., Farias, R. N., Trucco, R. E. 1973. Regulation by membrane fluidity of the allosteric behavior of the Ca++-ATPase fromEscherichia coli. Journal of Bacteriology115:723–726.

    Google Scholar 

  26. Siñeriz, F., Farias, R. N., Trucco, R. E. 1973. Lipid-protein interactions in membranes: Arrhenius plots and Hill plots in membrane-bound Ca++-ATPase ofE. coli. FEBS Lett.32:30–32.

    Google Scholar 

  27. Siñeriz, F., Farias, R. N., Trucco, R. E. 1975. The convenience of the use of allosteric “probes” for the study of lipid-protein interaction in biological membranes: thermodynamic considerations. Journal of Theoretic Biology52:113–120.

    Google Scholar 

  28. Tanaka, Y., Anraku, Futai, M. 1976.E. coli membrane D-lactate-dehydrogenase. Journal of Biochemistry80:821–830.

    Google Scholar 

  29. Williams, M. A., Stancliff, R. C., Packer, L., Keith, A. D.. 1972. Relation of unsaturated fatty acid composition of rat liver mitochondria to oscillation period, spin label motion, permeability and oxidative phosphorylation. Biochimica et Biophysica Acta267:444–456.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, H., Siñeriz, F. & Farias, R.N. Influence of the incorporation of cholesterol on the doubling time and on the arrhenius and hill plots of two membrane-bound enzymes ofEscherichia coli K12 . Current Microbiology 8, 215–220 (1983). https://doi.org/10.1007/BF01579549

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01579549

Keywords

Navigation