Inventiones mathematicae

, Volume 47, Issue 3, pp 249–272 | Cite as

The Campbell-Hausdorff formula and invariant hyperfunctions

  • Masaki Kashiwara
  • Michèle Vergne
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cerezo, A., Chazarain, J., Piriou, A.: Introduction aux hyperfonctions. Lecture notes in Math.449, pp. 1–53. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  2. 2.
    Chang, W.: Global solvability of bi-invariant differential operators on exponential solvable Lie groups (preprint 1977)Google Scholar
  3. 3.
    Dixmier, J., Duflo, M., Vergne, M.: Sur la représentation coadjointe d'une algèbre de Lie. Composition Math.29, 309–323 (1974)Google Scholar
  4. 4.
    Duflo, M.: Opérateurs différentiels bi-invariants sur un groupe de Lie. Ann. Sci. École Norm. Sup.10, 265–288 (1977)Google Scholar
  5. 5.
    Duflo, M., Raïs, M.: Sur l'analyse harmonique sur les groupes de Lie résolubles. Ann. Sci. École. Norm. Sup.9, 107–114 (1976)Google Scholar
  6. 6.
    Harish-Chandra: Invariant eigendistributions on a semi-simple Lie group. Trans. Amer. Math. Soc.119, 457–508 (1965)Google Scholar
  7. 7.
    Helgason, S.: Solvability of invariant differential operators on homogeneous manifolds. In: Differential Operators on Manifolds (ed. Cremoneze). Roma: C.I.M.E. 1975Google Scholar
  8. 8.
    Kirillov, A.A.: The characters of unitary representations of Lie groups. Functional Anal. Appl.2, 40–55 (1968)Google Scholar
  9. 9.
    Kostant, B.: Quantization and Unitary Representations. Lecture Notes in Math. 170, pp. 87–208. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  10. 10.
    Miwa, T., Oshima, T., Jimbo, M.: Introduction to micro-local analysis, Proceedings of OJI Seminar on Algebraic Analysis. Publ. R.I.M.S. Kyoto Univ. 12 supplement, 267–300 (1966)Google Scholar
  11. 11.
    Raïs, M.: Solutions élémentaires des opérateurs différentiels bi-invariants sur un groupe de Lie nilpotent. C.R. Acad. Sci.273, 49–498 (1971)Google Scholar
  12. 12.
    Raïs, M.: Resolubilité locale des opérateurs bi-invariants. Éxposé au Séminaire Bourbaki, February 1977Google Scholar
  13. 13.
    Rentschler, R., Vergne, M.: Sur le semi-centre du corps enveloppant d'une algèbre de Lie. Annales Scientifiques de l'Ecole Normale Supèrieure, vol. 6, p. 389–405, 1973Google Scholar
  14. 14.
    Rouvière, F.: Sur la résolubilité locale des opérateurs bi-invariants. Ann. Sc. norm. super. Pisa, Cl. Sci. IV, Ser.3, 231–244 (1976)Google Scholar
  15. 15.
    Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations. Lecture notes in Math. 287, pp. 265–529. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  16. 16.
    Howe, R.: On a connection between nilpotent groups and oscillatory integrals associated to singularities (preprint)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Masaki Kashiwara
    • 1
  • Michèle Vergne
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations