Skip to main content
Log in

Root resorptions in upper first premolars after application of continuous intrusive forces

Intra-individual study

Wurzelresorptionen an oberen ersten Prämolaren nach Applikation kontinuierlicher intrudierender Kräfte

Intraindividuelle Untersuchung

  • Original Contributions
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

A scanning electron microscopy study of possible root resorptions and their localization after application of continuous forces of different magnitudes was conducted. Twelve upper first premolars, indicated for extraction, were previously intruded with constant forces. The teeth were divided into 3 groups: 1. non-moved control teeth, 2. continuous force application of 50 cN for 4 weeks, 3. continuous force application of 100 cN for 4 weeks. Specially designed NiTi-SE-stainless steel springs were utilized to exert the actual forces. After experimental tooth movement, the extracted teeth were dehydrated, metal-coated and examined by scanning electron microscopy. The intruded teeth showed resorptive areas consisting of lacunae (concavities) in the mineralized root surface. The teeth moved with 50 cN showed in the apical third several, in the medial third few, and in the cervical third no resorptive areas. In the case of the teeth moved with 100 cN, we observed resorptive areas in most of the apical third—including the apex contour—, several in the medial third, and none in the cervical third. In the control group no resorptions were observed. Thus, our results suggest that intrusion of human teeth with continuous forces induces root resorption, depending on the magnitude of force applied.

Zusammenfassung

Eine histologische Studie der möglichen Wurzelresorptionen und ihre Lokalisation bei der Anwendung kontinuierlicher Kräfte unterschiedlicher Größe wurde durchgeführt. Zwölf erste obere Prämolaren, die im Rahmen einer Extraktionstherapie entfernt werden sollten, wurden vorher mit konstanten Kräften intrudiert. Es erfolgte eine Einteilung in drei Gruppen: 1. nichtbewegte Kontrollzähne, 2. kontinuierliche Kraftapplikation mit 50 cN für vier Wochen, 3. kontinuierliche Kraftapplikation von 100 cN für vier Wochen. Zur Anwendung kamen speziell gefertigte NiTi-SE-Stahl-Federn, die die jeweiligen Kräfte ausübten. Die entfernten Zähne wurden nach entsprechender Aufarbeitung metallbeschichtet und in einem Rasterelektronenmikroskop untersucht. Die resorptiven Bereiche zeigten sich in Form von Lakunen (Konkavitäten) im Bereich der mineralisierten Wurzeloberfläche der intrudierten Zähne. Die mit 50 cN bewegten Zähne zeigten im apikalen Drittel mehrere, im medialen Drittel selten und im zervikalen Drittel keine resorptiven Bereiche. Bei den mit 100 cN bewegten Zähnen konnten resorptive Bereiche im überwiegenden Teil des apikalen Drittels-einschließlich der Wurzelspitzenkontur-, im mittleren Drittel nur gelegentlich und im zervikalen Drittel keine resorptiven Bereiche beobachtet werden. Bei der Kontrollgruppe traten keine Resorptionen auf. Eine Intrusion menschlicher Zähne mit kontinuierlichen Kräften verursacht Wurzelresorptionen, die von der angewandten Kraftgröße abhängig sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arana-Chavez VE, Soares AMV, Katchburian E. Junctions between early developing osteoblasts of rat calvaria as revealed by freeze-fracture and ultrathin section electron microscopy. Arch Hist Cytol 1995;58:285–92.

    Google Scholar 

  2. Barber AF, Sims MR. Rapid maxillary expansion and external root resorption in man: a scanning electron microscope study. Am J Orthod 1981;76:630–52.

    Google Scholar 

  3. Bench R, Gugino C, Hilgers JJ. Forces used in bioprogressive therapy. J Clin Orthod 1978;12:123–39.

    Google Scholar 

  4. Brezniak N, Wasserstein A. Root resorption after orthodontic treatment: Part 1. Literature review. Am J Orthod Dentofac Orthop 1993;103:62–6.

    Google Scholar 

  5. Brown WA. Resorption of permanent teeth. Br J Orthod 1982;9:212–25.

    Google Scholar 

  6. Brudvik P, Rygh P. The initial phase of orthodontic root resorption incident to local compression of the periodontal ligament. Eur J Orthod 1993;15:249–63.

    Google Scholar 

  7. Giannely AA, Goldman HM. Biologic basis of orthodontics. Philadelphia: Lea & Febiger, 1971:116–203.

    Google Scholar 

  8. Giganti U, Favilli F, Falconi A, Maino BG. Die kieferorthopädische Wurzelresorption: eine Literaturübersicht. Inf Orthod Kieferorthop 1997;1:83–108.

    Google Scholar 

  9. Göz GR, Rahn BA. The effects of horizontal tooth loading on the circulation and width of the periodontal ligament—an experimental study on beagle dogs. Eur J Orthod 1992;14:21–33.

    Google Scholar 

  10. Küçükkeles N, Acar A, Okar I. Root resorption during premolar intrusion with varying force magnitudes. Eur J Orthod 1995;17:342.

    Google Scholar 

  11. Kurol J, Owman-Moll P, Lundgren D., Time-related root resorption after application of a controlled continuous orthodontic force. Am J Orthod Dentofac Orthop 1996;110:303–10.

    Google Scholar 

  12. Lee B. Relationship between tooth movement rate and estimated pressure applied. J Dent Res 1965;44:1053.

    Google Scholar 

  13. Linge BO, Linge L. Apical root resorption in upper anterior teeth. Eur J Orthod 1983;5:173–83.

    Google Scholar 

  14. Linge L, Linge OB. Patient characteristics and treatment variables associated with apical root resorption during orthodontic treatment. Am J Orthod Dentofac Orthop 1991;96:35–43.

    Google Scholar 

  15. Lundgren D, Owmann-Moll P, Kurol J. Early tooth movement pattern after application of a controlled continuous orthodontic force. A human experimental model. Am J Orthod Dentofac Orthop 1996;110:287–94.

    Google Scholar 

  16. Maltha JC, Van Leeuwen EJ, Kuijpers-Jagtman AM. Tissue reactions to light orthodontic forces. Eur J Orthod 1995;17:343–4.

    Google Scholar 

  17. Murakami T, Yokota S, Takahama Y. Periodontal changes after experimentally induced intrusion of upper incisors in Macaca fuscata monkeys. Am J Orthod Dentofac Orthop 1989;95:115–26.

    Google Scholar 

  18. Nikolai RJ. On optimal orthodontic force theory as applied to canine retraction. Am J Orthod 1975;68:290–301.

    Google Scholar 

  19. Nolla C. Development of the permanent teeth. J Dent Child 1960;27:254–65.

    Google Scholar 

  20. Oppenheim A. Human tissue response to orthodontic intervention of short and long duration. Am J Orthod 1942;28:263–301.

    Google Scholar 

  21. Owman-Moll P, Kurol J, Lundgren D. Effects of increased force magnitudes on tooth movement and root resorption. Eur J Orthod 1995;17:347.

    Google Scholar 

  22. Owman-Moll P, Kurol J, Lundgren D. Continuous versus interrupted continuous orthodontic force related to early tooth movement and root resorption. Angle Orthod 1996;65:395–402.

    Google Scholar 

  23. Owman-Moll P, Kurol J, Lundgren D. Effects of a doubled orthodontic force magnitude on tooth movement and root resorptions. An inter-individual study in adolescents. Eur J Orthod 1996;18:141–50.

    Google Scholar 

  24. Pilon JJGM, Kuijpers-Jagtman AM, Maltha JC. Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study. Am J Orthod Dentofac Orthop 1996;110:16–23.

    Google Scholar 

  25. Reitan K. The reaction as related to age factor. Dent Rec 1954;74:271–89.

    Google Scholar 

  26. Reitan K. Effects of force magnitude and direction of tooth movement of different alveolar bone types. Angle Orthod 1964;34:244–55.

    Google Scholar 

  27. Reitan K. Clinical and histologic observations on tooth movement during and after orthodontic treatment. Am J Orthod 1967;53:721–45.

    Google Scholar 

  28. Reitan K. Initial tissue response behaviour during apical tooth resorption. Angle Orthod 1974;44:68–82.

    Google Scholar 

  29. Reitan K, Kvam E. Comparative behaviour of human and animal tissue during experimental teeth movement. Angle Orthod 1971;41:1–14.

    Google Scholar 

  30. Rygh P. Ultrastructural cellular reactions in pressure zones of rat molar periodontium incident to orthodontic tooth movement. Acta Odont Scand 1972;30:575–93.

    Google Scholar 

  31. Rygh P. Elimination of hyalinized periodontal tissue associated with orthodontic tooth movement. Scand J Dent Res 1974;82: 57–73.

    Google Scholar 

  32. Rygh P. Orthodontic root resorption studied by electron microscopy. Angle Orthod 1977;47:1–16.

    Google Scholar 

  33. Sander FG. Eigenschaften superelastischer Drähte und deren Beeinflussung. Inf Orthod Kieferorthop 1990;4:501–14.

    Google Scholar 

  34. Sander FG, Wichelhaus A. Klinische Anwendung der neuen NiTi-SE-Aufrichtefeder. Forschr Kieferorthop 1995;56:296–308.

    Google Scholar 

  35. Schwarz AM. Tissue changes incidental to orthodontic tooth movement. Int J Orthodont 1932;18:331–52.

    Google Scholar 

  36. Storey E. The nature of tooth movement. Am J Orthod Dentofac Orthop 1973;63:293–314.

    Google Scholar 

  37. Storey E, Smith R. Force in orthodontics and its relation to tooth movement. Austr J Dent 1952;56:11–18.

    Google Scholar 

  38. Suarez-Quintanilla D, Canut JA. Eine experimentelle Studie der kieferorthopädischen Wurzelresorption an menschlichen Schneidezähnen. Inf Orthod Kieferorthop 1997;1:23–34.

    Google Scholar 

  39. Ten Cate AR, Anderson RD. An ultrastructural study of tooth resorption in the kitten. J Dent Res 1986;65:1087–99.

    Google Scholar 

  40. Van Leeuwen EJ, Maltha JC. Tooth movement with light continuous and discontinuous forces in dogs. Eur J Orthod 1995;17:344.

    Google Scholar 

  41. Wichelhaus A, Sander FG. Das Verhalten von superelastischen Drähten im elastischen und plastischen Bereich in Abhängigkeit von der Temperatur. Kieferorthop Mitt 1994;8:95–106.

    Google Scholar 

  42. Wichelhaus A, Sander FG. Entwicklung und Testung einer neuen NiTi-SE-Stahl-Aufrichtefeder. Fortschr Kieferorthop 1995;56:283–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faltin, R.M., Arana-Chavez, V.E., Faltin, K. et al. Root resorptions in upper first premolars after application of continuous intrusive forces. J Orofac Orthop/Fortschr Kieferorthop 59, 208–219 (1998). https://doi.org/10.1007/BF01579165

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01579165

Key Words

Schlüsselwörter

Navigation