Skip to main content
Log in

Z 0 decay and electron positron annihilation into three gluons

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

After pointing out that the two-gluon decay mode of theZ 0 vanishes, we calculate, in detail, the differential and the total decay rates forZ 0ggg. Using the standard Glashow-Weinberg-Salam model and Quantum Chromodynamics, we find a branching ratio of 1.8×10−5. We also discussZggγ andZ 0→γγγ. As a natural extension of this work, we present the details of a calculation of the differential and the total cross sections for the processe + e ggg mediated by a virtual photon in the continuum. A detailed comparison with\(e^ + e^ - \to q\bar qg\) and a brief discussion ofe + e ggγ ande + e →γγγ are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Perl:e + e Physics today and tomorrow. SLAC-PUB-2615, September 1980 (unpublished); C.H. Llewellyn Smith:e + e Physics beyond PETRA energies. LEP Summer Study/1-2, October,1978

  2. B. Guberina et al.: Nucl. Phys.B174, 317 (1980)

    Google Scholar 

  3. H.P. Nilles: Phys. Rev. Lett.45, 319 (1980); T. Rizzo: Phys. Rev.D 22, 2213 (1980)

    Google Scholar 

  4. R. Cahn, M.S. Chanowitz, N. Fleishon: Phys. Lett.82 B, 113 (1979)

    Google Scholar 

  5. T.R. Grose, K.O. Mikaelian. Phys. Rev.D23, 123 (1981)

    Google Scholar 

  6. M.I. Laursen, K.O. Mikaelian, M.A. Samuel. Phys. Rev.D23, 2795 (1981)

    Google Scholar 

  7. C.N. Yang: Phys. Rev.77, 242 (1950)

    Google Scholar 

  8. V. Costantini, B. De Tollis, G. Pistoni: Nuovo Cimento2A, 733 (1971); B. De Tollis: Nuovo Cimento32, 757 (1964);35, 1182 (1965); R. Karplus, M. Neuman: Phys. Rev.83, 776 (1951)

    Google Scholar 

  9. K. Fabricius, I. Schmitt, G. Schierholz, B. Kramer: Phys. Lett.91 B, 431 (1980); J.G. Körner, G. chierholtz, J. Willrodt: Nucl. Phys.B 185, 365 (1981); K. Fabricius et al.: Z. Phys. C-Particles and Fields11, 315 (1982)

    Google Scholar 

  10. Reports by the MARK-J, PLUTO, TASSO and JADE collaborations in: Proceedings of the International Symposium on Lepton and Photon Interactions at High Energies. T.B.W. Kirk, H. Abarbanel, Eds., 1979 (Batavia, Illinois). For a recent review see G. Wolf: DESY Preprint 80/85 (unpublished)

  11. J. Ellis, M.K. Gaillard, G.G. Ross: Nucl. Phys.B111, 253 (1976); T.A. DeGrand, Y.J. Ng, S.H.H. Tye: Phys. Rev.D 16, 3251 (1977); G. Sterman, S. Weinberg: PHys. Rev. Lett.39, 1436 (1977). For a recent review see T.F. Walsh: Proceedings of Vanderbilt Symposium one + e Interactions, AIP (1980)

    Google Scholar 

  12. M.L. Laursen, K.O. Mikaelian, M.A. Samuel: Phys. Rev.D25, 710 (1982)

    Google Scholar 

  13. H.P. Nilles, K.H. Streng: Phys. Rev.D 23, 1944 (1981)

    Google Scholar 

  14. S.J. Brodsky, J.F. Gunion: Phys. Rev. Lett.37, 402 (1976); E.G. Floratos, F. Hayot, A. Morel: Phys. Lett.90 B, 297 (1980); H.P. Nilles: Phys. Rev. Lett.45, 319 (1980)

    Google Scholar 

  15. F.E. Close: An introduction to quarks and partons. New York: Academic Press 1979

    Google Scholar 

  16. S.L. Adler: Phys. Rev.177, 2426 (1969); J.S. Bell, R. Jackiw: Nuovo Cimento60 A, 47 (1969); L. Rosenberg: Phys. Rev.129, 2786 (1963)

    Google Scholar 

  17. In going from the Pauli metrie (ict) to the covariant metric, one uses the substitution ruleP 4iP 0

  18. E. Byckling, K. Kajantie. Particle kinematics. London: Wiley 1973

    Google Scholar 

  19. C. Chlouber, M.A. Samuel: Comp. Phys. Comm.15, 513 (1978)

    Google Scholar 

  20. J. Ellis, M.K. Gaillard, G.G. Ross: Nucl. Phys.B 111, 253 (1976)

    Google Scholar 

  21. G.P. Lepage: VEGAS. J. Comp. Phys.27, 192 (1978)

    Google Scholar 

  22. We useα s =4π/7 log(M 2 Z Λ 2)≃0.17 and sin2 θ w ≃0.23

  23. Here, as well as in Sect. VI, we have assumed that the gluons are, in principle, distinguishable and, therefore, have not included the statistical factors 1/n! in the total cross-sections and total rates (n is the number of identical particles in the final state). If, however, one considers indistinguishablegluon jets, the factor 1/n! should be included

  24. E.G. Floratos, F. Hayot, A. Morel: Phys. Lett.90 B, 297 (1980); H.P. Nilles, K.H. Streng: Phys. Rev.D 23 1944 (1981); S.J. Brodsky, J.F. Gunion: Phys. Rev. Lett.37, 402 (1976)

    Google Scholar 

  25. D.R. Yennie, S.C. Frautschi, H. Suura: Ann. Phys.13, 379 (1961)

    Google Scholar 

  26. F. Bloch, A. Nordsieck. Phys. Rev.52, 54 (1937)

    Google Scholar 

  27. T.D. Lee, M. Nauenberg: Phys. Rev.133, B 1549 (1964); T. Kinoshita: J. Math. Phys.3, 650 (1962)

    Google Scholar 

  28. R.D. Field: Perturbative quantum chromodynamics and applications to large momentum-transfer processes. NATO Advanced Study Institute on Quantum Flavordynamics, Quantum Chromodynamics, and Unified Theories, Boulder, Colorado 1979 (Plenum Press, N.Y. 1980)

    Google Scholar 

  29. J.G. Korner et al.: Phys. Lett.94 B, 207 (1980); K. Fabricius, I. Schmitt: Z. Phys. C—Particles and Fields3, 51 (1979)

    Google Scholar 

  30. Ellis et al.: and erratum Nucl. Phys.B 130, 516 (1977)

    Google Scholar 

  31. N. Bilic, S. Meljanac: Production of gluon jets via the Zo resonance, unpublished (1981)

  32. Asx i →0,x j →1 andx k →1, wherei,j,k=1, 2 or 3

  33. V. Baîer, E. Kurayev, V. Fadin: Sov. J. Nucl. Phys.31, 364 (1980)

    Google Scholar 

  34. The integrals are taken from the work of T.R. Grose and K.O. Mikaelian, [5]. Eqn. (6–33) is valid for arbitrary ε, 0<ε≦1/3. For small ε≦0.01 this result agrees with the expansion given by Ellis et al.

    Google Scholar 

  35. We have included thet quark in\(\alpha _s = \frac{{12\pi }}{{(33 - 2n_f )\log \left( {\frac{{Q^2 }}{{mq2}}} \right)}}\) and set\(n_f = 6,\sum\limits_i {q_i } = 1\), though eur approximationmqQ will fail fort quarks atQ=40 GeV ifm t ≧20 GeV

  36. J.D. Bjorken: Memo to SP-ly experimenters (1975); see also J. Ellis et al.:111, 253 (1976)

    Google Scholar 

  37. L. Lewin: Dilogariths and Associated Functions. MacDonald, London, 1958

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laursen, M.L., Samuel, M.A. Z 0 decay and electron positron annihilation into three gluons. Z. Phys. C - Particles and Fields 14, 325–344 (1982). https://doi.org/10.1007/BF01578654

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01578654

Keywords

Navigation