Skip to main content
Log in

Influence of free convection on the heat transfer from hot-wire probes

Einfluß der freien Konvektion auf den Wärmeübergang bei Hitzdrahtsonden

  • Originalarbeiten
  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The present paper is concerned with the experimental determination of the influence of free convection on the heat transfer from horizontal hot-wire probes in cross flow. Free convective flow can be minimized under microgravity conditions and its quantity can be determined by comparisons with terrestrial investigations. Using the developod experimental setups it is possible to investigate all three flow regimes, i.e. pure free, mixed, and pure forced convection (o ≤Re ≤ 0.1). It was found that the influence of free convection is limited to Reynolds numberRe ≤ 0.0045, independent of the overheat ratio. Based on the findings of Collis and Williams [12], the influence of free convection can be neglected forRe > 0.58 ·Gr 1/3. The fluid properties are computed at the film temperature. Two correlations are established for the regime of pure forced convection. End losses to the supports were determined in a vacuum experiment, thus allowing comparison with theoretical investigations. The difference between the analytical computations and the measurement data in the range 0 ≤Re ≤ 0.02 is caused by the three-dimensional heat transfer occuring in the experimental investigation.

Zusammenfassung

Die vorliegende Untersuchung beschäftigt sich mit der experimentellen Bestimmung des Einflusses der freien Konvektion auf den Wärmeübergang bei quergeströmten Hitzdrahtsonden. Die freie Konvektionsströmung kann unter Schwerelosigkeit minimiert und ihre Größe durch den Vergleich mit terrestrischen Untersuchungen ermittelt werden. Mit den erstellten Experimentaufbauten ist es möglich, alle drei Strömungsbereiche von der rein freien über die gemischte bis zur rein erzwungenen Konvektion zu untersuchen (0 <-Re ≤ 0,1). Dabei wurde festgestellt, daß der Einfluß der freien Konvektion sich unabhängig von Überhitzungsverhältnis nur bis zu einer ReynoldszahlRe ≤ 0,0045 erstreckt. Zur Vernachlässigung der freien Konvektion kann in Anlehnung an Collins und Williams folgende Beziehung angegeben werden:Re > 0,58 ·Gr 1/3. Die Stoffwerte werden bei der Filmtemperatur berechnet. Für den Bernich der rein erzwungenen Konvektion wurden zwei Korrelationer aufgestellt. Durch einen Vakuumversuch wurden die Endverluste in die Haltespitzen ermittelt und somit der Vergleich mit theoretischen Arbeiten ermöglicht. Der Unterschied zwischen den analytischen Berechnungen und den Meßdaten im Bereich 0 ≤Re ≤ 0,02 ergibt sich durch den dreidimensionalen Wärmeübergang bei der experimentellen Untersuchung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A, B :

numerical constants

a :

overheat ratio

a :

speed of sound

b :

wall distance

d :

wire diameter

g :

gravitational acceleration

Gr :

Grashof number =g(T wT )βd 3/υ 2

Kn :

Knudsen number =λ/d

l :

wire length

m :

temperature loading factor

Ma :

Mach number =ν/a

n :

exponent of Reynolds number

Nu :

Nusselt number =αd/λ

Pr :

Prandtl number = υ/α

Q :

heat transfer rate per unit area

R :

resistance

Re :

Reynolds number =ν dρ/η

T :

temperature

U :

voltage

ν :

flow velocity

α :

heat transfer coefficient

β :

coefficient of thermal expansion

η :

dynamic viscosity

λ :

thermal conductivity

λ :

mean free path

υ :

kinematic viscosity

ρ :

density

ψ :

angle of attack

B:

Wheatstone's bridge

c:

continuum

crit:

critical

f:

arithmetric mean of (T wT )

m:

without end losses

min:

minimum

vac:

vacuum

w:

wire

o:

zero velocity

∞:

ambient conditions

References

  1. King, L. V. On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires, with applications to hot-wire anemometry. Proc. Roy. Soc. (London), 241A, No. 14 (1914) 373–432

    Google Scholar 

  2. Hinze, J. O. Turbulence. New York: McGraw-Hill Book Company 1975

    Google Scholar 

  3. Schledde, R. Konstant-Temperatur-Anemometer. Messen und Prüfen, Bd. 16 H. 10 (1980) 679–684

    Google Scholar 

  4. Cole, J.; Roshko, A.: Heat transfer from wires at Reynolds numbers in the Oseen range. Proc. of Heat Transfer and Fluid Mech. Inst., Univ. California, Berkeley (1954) 13–23

  5. Levey, H. C. Heat transfer in slip flow at low Reynolds numbers. J. Fluid Mech. 6 (1959) 385–391

    Google Scholar 

  6. Illingworth, C. R. Laminary boundary layers. Oxford: Clarendon Press, Ed. L. Rosenhead (1963) 193–194

    Google Scholar 

  7. Wood, W. W. Calculations for anemometry with fine hot wires. J. Fluid Mech. 32 (1968) 9–19

    Google Scholar 

  8. Kassoy, D. R. Heat transfer from circular cylinders at low Reynolds numbers. Theory for variable Property flow. The Physics of Fluids 10 (1967) 938–952

    Google Scholar 

  9. Hieber, C. A.;Gebhart, B. Low Reynolds number heat transfer from a circular cylinder. J. Fluid Mech. 32 (1968) 21–28

    Google Scholar 

  10. Dennis, S. C. R.; Hudson, J. D.; Smith, N.: Steady laminar forced convection from a circular cylinder at low Reynolds numbers. Physics Fluids II (1968) 933–940

  11. Sucker, D.;Brauer, H. Stationärer Stoff- und Wärmeübergang an stationär quer angeströmten Zylindern. Wärme- und Stoffübertragung 9 (1976) 1–12

    Google Scholar 

  12. Collis, D. C.;Williams, M. J. Two-dimensional convection from heated wires at low Reynold numbers. J. Fluid Mech. 6 (1959) 357–384

    Google Scholar 

  13. Andrews, G. E.;Bradley, D.;Hundy, G. F. Hot wire anemometer calibration for measurement of small gas velocities. Int. J. Heat Mass Transfer 15 (1972) 1765–1786

    Google Scholar 

  14. Mahajan, R. L.;Gebhart, B. Hot-wire anemometer calibration in pressurised nitrogen at low velocities. J. Phys. E.: Sci. Instr. 13 (1980) 1110–1118

    Google Scholar 

  15. Hollasch, K.;Gebhart, B. Calibration of constant temperature hot-wire anemometers at low velocities in water. J. Heat Transfer 94 (1972) 17–22

    Google Scholar 

  16. Baille, A.: Lois de refroidissement des fils chauds aux faibles vitesses. Bull. direction Etudes Recherches (Electricte' de france), Ser. A No. 3 (1973) 1–201

  17. Van der Heege Zijnen, B. G. Modified correlation formulae for the heat transfer by natural and by forced convection from horizontal cylinders. Appl. Sci. Res. A6 (1956) 129–140

    Google Scholar 

  18. Hatton, A. P.;James, D. D.;Swire, H. W. Combined forced and natural convection with low-speed air flow over horizontal cylinders. J. Fluid Mech., 42 part 1 (1970) 17–31

    Google Scholar 

  19. Blackwelder, R. F. Hot-wire and hot-film anemometers. Methods of Experimental Physics 18 (1981) 259–314

    Google Scholar 

  20. Champagne, F. H.;Sleicher, C. A.;Wehrmann, O. H. Turbulence measurement with inclined hot-wires, Part 1. Heat transfer experiments with inclined hot-wire. J. Fluid Mech. 28 (1967) 153–175

    Google Scholar 

  21. Gebhart, B.;Pera, L. Mixed convection from long horizontal cylinders. J. Fluid Mech. 45, part 1 (1970) 49–64

    Google Scholar 

  22. Lowell, H. H.: Design and application of hot-wire anemometers for steady state measurements of transonic and supersonic air speeds. NACA TN 2117 (1950)

  23. Sandborn, V. A.; Laurence, J. C.: Heated loss from yawed hot-wires at subsonic Mach numbers. NACA TN 3563 (1955)

  24. Davies, P. O. A. L.;Fisher, M. J. Heat transfer from electrically heated cylinders. Proc. R. Soc. 280 A (1964) 486–527

    Google Scholar 

  25. Freymuth, P.: Engineering estimate of heat conduction loss in constant temperature thermal sensors. TSI-Quaterly, August-September (1979)

  26. Spangenberg, W. G. Heat loss characteristics of hot wire anemometers at various densities in transonic and supersonic flow. NACA TN 3381, Washington: National Bureau of Standards (1955)

    Google Scholar 

  27. Baldwin, L. V.;Sandborn, V. A.;Laurence, J. C. Heat transfer from transverse and yawed cylinders in continuum, slip and free molecular air flows. J. Heat Transfer 82 (1960) 77–86

    Google Scholar 

  28. Morgan, V. T. The overall convective heat transfer from smooth circular cylinders. Advan. Heat Transfer 11 (1975) 199–264

    Google Scholar 

  29. Turan, Ö.;Azad, R. S.;Atamanchuk, T. M. Wall effect on the hot-wire signal without flow. J. Phys. E: Sci. Instrum. 20 (1987) 1278–1280

    Google Scholar 

  30. Bradbury, L. J. S.;Castro, I. P. Some comments on heat transfer laws for fine wires. J. Fluid Mech. 51 No. 3 (1972) 487–495

    Google Scholar 

  31. Abdel-Rahmann, A. A.;Tropea, C.;Slawson, P.;Strong, A. On temperature compensation in hot-wire anemometry. J. Phys. E: Sci Instrum. 20 (1987) 315–319

    Google Scholar 

  32. Rath, H. J.: The Bremen Drop Tower — Programmes and Perspectives. Proceedings of the 42nd I.A.F. — Congress, Montreal, Canada (1991)

  33. Aydin, M.; Leutheusser, H. J.: Very low velocity calibration and application of hot-wire probes. DISA Information No. 25 (1980) 17–18

  34. Tabatabai, M.;Pollard, A.;McPhail, A. A device for calibrating hot-wire probes at low velocities. J. Phys. E: Sci. Instrum 19 (1986) 630–632

    Google Scholar 

  35. Heikal, M.; Antoniou, A.; Cowell, T. A.: A rig for the static calibration of constant temperature hot wires at very low velocities. Exper. Ther. and Fluid Sci. (1988) 221–223

  36. Tsanis, I. K.: Calibration of hot wire anemometers at very low velocities. Dantec Information No. 4 (1987) 13–14

  37. Tewari, S. S.;Jaluria, Y. Calibration of constant temperature hot-wire anemometers for very low velocities in air. Rev. Sci. Instrum. 61 (1990) 3834–3845

    Google Scholar 

  38. Hah, C.;Lakshminarayana, B. Effect of rotation on a rotating hot wire sensor. J. Phys. E.: Sci. Instrum. 11 (1978) 999–1001

    Google Scholar 

  39. Broer, L. J. F.;Hoogendoorn, C. J.;Kortleven, A. Some investigations on low speed anemometry. Appl. Sci. Res., Sect. A7 (1957–1958) 1–3

    Google Scholar 

  40. Verein Deutscher Ingenieure VDI-Wärmeatlas. 6. Auflage, Düsseldorf: VDI-Verlag (1991)

    Google Scholar 

  41. Koch, F. A.;Gartshore, I. S. Temperature effects on hot-wire anemometer calibrations. J. Phys. E.: Sci. Instrum. 5 (1972) 58–61

    Google Scholar 

  42. Lomas, C. G.: Fundamentals of hot-wire anemometry. Cambridge University Press (1986)

  43. Gnielinski, V. Berechnung mittlerer Wärme- und Stoffübergangs-koeffizienten an laminar und turbulent überströmten Einzelkörpern mit Hilfe einer einheitlichen Gleichung. Forschg. Ing.-Wes. 41 No. 5 (1975) 145–153

    Google Scholar 

  44. Loos, G. Beitrag zur Frage des Wärme- und Stoffaustausches bei erzwungener Strömung an Körpern in verschiedener Form. Dissertation, TH Darmstadt (1957)

    Google Scholar 

  45. Wilhelm, T.: Numerische Berechnung der minimalen Nusselt-Zahl für Zylinder mit beliebigeml/d-Verhältnis mittels Koordinatentransformation. Studienarbeit, Universität Karlsruhe (1988)

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors acknowledge the support of the Deutsche Agentur für Raumfahrtangelegenheiten (DARA) under grant number 50-QV 8898-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stengele, F.R., Rath, H.J. Influence of free convection on the heat transfer from hot-wire probes. Warme - Und Stoffubertragung 29, 299–307 (1994). https://doi.org/10.1007/BF01578414

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01578414

Keywords

Navigation