Skip to main content
Log in

Biochemical and physiological characterization of the efrotomycin fermentation

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

An efrotomycin fermentation was characterized through physical, chemical and biochemical studies. Growth of the actinomycete,Nocardia lactamdurans occurred during the first 50 h of the fermentation cycle at the expense of glucose, protein, and triglycerides. The initiation of efrotomycin biosynthesis was observed when glucose dropped to a low concentration. Upon glucose depletion, cell growth ceased and a switch in the respiratory quotient occurred. Efrotomycin biosynthesis was supported by the utilization of soybean oil and starch. Analysis of triglyceride metabolism showed that no diglycerides or monoglycerides accumulated during the fermentation. The activity of extracellular enzymes (lipase, protease, and amylase) increase during the cell growth phase and decreased significantly after 150 h. The concentrations of DNA, tetrahydro-vitamin K2 (a membrane component), and free amino acids in the supernatant increased dramatically late in the fermentation cycle (225 h), indicating massive cell lysis. During this same time period, a reduction in cellular respiratory activity and efrotomycin biosynthesis were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonowitz, Y. 1980. Nitrogen metabolite regulation of antibiotic biosynthesis. Ann. Rev. Microb. 34: 209–233.

    Google Scholar 

  2. Berger, J., H. Leber, S. Teitel, H. Maehr and E. Grunberg. 1973. A new antibiotic X-5108 of streptomyces origin. 1. Production, isolation, and properties. J. Antibiot. 26: 15–22.

    Google Scholar 

  3. Buckland, B., T. Brix, H. Fastert, K. Gbewonyo, G. Hunt and D. Jain. 1985. Fermentation exhaust gas analysis using mass spectrometry. Bio. Technol. 3: 982–988.

    Google Scholar 

  4. Burton, K. 1957. A study on the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. J. Biochem. 62: 315–323.

    Google Scholar 

  5. Calam, C.. 1987. Process Development in Antibiotic Fermentations. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  6. Cover, W., A. Kirpekar, H. George and R. Steiber. 1990. Calcium inhibition of efrotomycin byNocardia lactamdurans. J. Industr. Microbiol. 7: 41–44.

    Google Scholar 

  7. Cromwell, G., H. Monegue and T. Stahly. 1985. Efficacy of efrotomycin as a growth promotant for swine. J. Anim. Sci. 61S: 313–314.

    Google Scholar 

  8. Darland, G. and L. Kaplan. 1990. The biosynthesis origin of the pyridone ring in efrotomycin. J. Cell. Biochem. Suppl. 14A: 115.

    Google Scholar 

  9. Drew, S. and A. Demain. 1977. Effect of primary metabolites on secondary metabolism. Ann. Rev. Microbiol. 31: 343–356.

    Google Scholar 

  10. Foster, A., E.S. Brokken, G.F. Ericsson, J.M. Preston, R.A. Roncalli and I.H. Sutherland. 1986. A review of Efrotomycin efficacy trials. Proceedings of the 9th Congress of the International Pig Veterinary Society, pp. 53.

  11. Gerhardt, P. 1981. Diluents and biomass measurement. In: Manual of Methods for General Bacteriology, (Gerhardt, P. Ed.) pp. 504–507. ASM Washington, DC.

    Google Scholar 

  12. Ginther, C. 1979. Sporulation and the production of serine protease and cephamycin C byStreptomyces lactamdurans. Antimicrob. Ag. Chemother. 10: 522–526.

    Google Scholar 

  13. Goodfellow, M. and T. Cross. 1984. Classification. In: Biology of the Actinomycetes, (Goodfellow, M., Mordarski, M. and William, S., Eds.) pp. 8–131. Associated Press, NY.

    Google Scholar 

  14. Harris, R. and S. Adams. 1979. Microbial cells and metabolites by dichromate oxidation. Appl. Environ. Microbiol. 37: 237–243.

    Google Scholar 

  15. Jain, D. and B. Buckland. 1988. Scale-up of the efrotomycin fermentation using a computer-controlled pilot plant. Bioprocess Engineering. 3: 31–36.

    Google Scholar 

  16. Jain, D., J. Nielsen and B. Buckland. 1990. Kinetics of efrotomycin synthesis in a synthetic fermentation medium. Bioprocess Engineering (in press)

  17. Lepage, G. and C. Roy. 1988. Specific methylation of plasma nonesterified fatty acids in a one step reaction. J. Lipid Res. 29: 227–235.

    Google Scholar 

  18. Liu, P. and C. Hsieh. 1969. Inhibition of protease production of various bacteria by ammonium salts: Its effect on toxin production and virulence. J. Bacteriol. 99: 406–413.

    Google Scholar 

  19. Liu, C., T. Williams and R. Pitcher. 1979. 13C-NMR studies on the biosynthesis of aurodox (antibiotic X-5108). J. Antibiot. 32: 414–417.

    Google Scholar 

  20. Luria, S. 1960. Bacterial protoplasm-composition and organization. In: The bacteria, Volume 1. (Gunsalus, I. and Stanier, R., Eds.). pp. 18. Academic Press, New York.

    Google Scholar 

  21. Martin, J. and A. Demain. 1980. Control of antibiotic biosynthesis. Microbiol. Rev. 44: 230–251.

    Google Scholar 

  22. May, B. and W. Elliot. 1968. Characteristics of extracellular protease formation byBacillus subtilis and its control by amino acid repression. Biochem. Biophys. Acta 157: 607–615.

    Google Scholar 

  23. Miller, T. and B. Churchill. 1986. Substrates for large-scale fermentations In: Manual of Industrial Microbiology and Biotechnology (Demain, A. and Solomon, N., Eds), pp. 122–136. ASM Washington, DC.

    Google Scholar 

  24. Nielsen, J. and L. Kaplan. 1989. A resting cell system for efrotomycin biosynthesis. J. Antibiot. 42: 944–951.

    Google Scholar 

  25. Nielsen, J. 1990. Biosynthesis of a modified polyketide containing two amino acid-derived residues. J. Cell Biochem. Suppl. 14A: 119.

    Google Scholar 

  26. Smibert, R. and N. Krieg. 1981. General characterization. In: Manual of Methods for General Bacteriology (Gerhardt, P. Ed.) pp. 411–472. ASM Washington, DC.

    Google Scholar 

  27. Tiez, N. and E. Fiereck. 1966. A specific method for serum lipase determination. Clin Chim. Acta. 13: 352.

    Google Scholar 

  28. Wax, R., W. Maiese, R. Weston and J. Birnbaum. 1976. Efrotomycin, a new antibiotic fromStreptomyces lactamdurans. J. Antibiot. 29: 670–673.

    Google Scholar 

  29. Weinberg, E. 1970. Biosynthesis of secondary metabolites: role of trace metals. Advan. Microbiol. Physiol. 4: 1–44.

    Google Scholar 

  30. Yamada, Y., G. Inouye, Y. Tahara and K. Kondo. 1977. The structures of menaquinones with a tetrahydrogenated isoprenoid side-chain. Biochem. Biophys. Acta 488: 280–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chartrain, M., Hunt, G., Horn, L. et al. Biochemical and physiological characterization of the efrotomycin fermentation. Journal of Industrial Microbiology 7, 293–299 (1991). https://doi.org/10.1007/BF01577658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01577658

Key words

Navigation