Skip to main content
Log in

Transposition and transduction of plasmid DNA inStreptomyces spp.

  • Reviews
  • Published:
Journal of Industrial Microbiology

Summary

To expand the application of molecular genetics to many different streptomycete species, we have been developing two potentially widely applicable methodologies: transposon mutagenesis and plasmid transduction. We constructed three transposons from theStreptomyces lividans insertion sequence IS493. Tn5096 and Tn5097 contain an apramycin resistance gene inserted in different orientations between the two open reading frames of IS493. These transposons transpose from different plasmids into many different sites in theStreptomyces griseofuscus chromosome and into its resident linear plasmids. Tn5099 contains a promoterlessxylE gene and a hygromycin-resistance gene inserted in IS493 close to one end. Tn5099 transposes inS. griseofuscus giving operon fusions in some cases that drive expression of thexylE gene product, catechol deoxygenase, giving yellow colonies in the presence of catechol. We have also developed plasmid vectors that can be transduced into many streptomycete species by bacteriophage FP43. We describe the characterization of FP43 and mapping of several bacteriophage functions. The region of cloned FP43 DNA essential for plasmid transduction includes the origin for headful packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballou, M. and R.N. Rao. 1990. Identification of replication function from streptomycete phage FP43. Abstract, American society for Microbiology Annual Meeting.

  2. Baltz, R.H., J.T. Fayerman, T.D. Ingolia and R.N. Rao. 1986. Production of novel antibiotics by gene cloning and protein engineering. In: Protein Engineering (Inouve, M. and Sarma, R., eds.), pp. 365–381, Academic Press, New York, NY.

    Google Scholar 

  3. Birch, A.W. and J. Cullum. 1985. Temperature-sensitive mutants of theStreptomyces plasmid pIJ702. J. Gen. Microbiol. 131: 1299–1303.

    Google Scholar 

  4. Chater, K.F., 1990. The improving prospects for yield increase by genetic engineering in antibiotic-producing streptomycetes. Bio/Technology 8: 115–121.

    Google Scholar 

  5. Cox, K.L. and R.H. Baltz. 1984. Restriction of bacteriophage plaque formation inStreptomyces spp. J. Bacteriol. 159: 499–504.

    Google Scholar 

  6. Deng, Z., T. Kieser and D.A. Hopwood. 1987. Activity of aStreptomyces transcriptional terminator inEscherichia coli. Nucleic Acids Res. 15: 2665–2675.

    Google Scholar 

  7. Deshpande, B.S., S.S. Ambedkar and J.G. Shewale. 1988. Biologically active secondary metabolites fromStreptomyces. Enz. Microb. Technology 1: 455–473.

    Google Scholar 

  8. Epp, J.K., M.L.B. Huber, J.R. Turner, T. Goodson and B.E. Schoner. 1989. Production of a hybrid macrolide antibiotic inStreptomyces ambofaciens andStreptomyces lividans by introduction of a cloned carbomycin biosynthetic gene fromStreptomyces thermotolerans. Gene 85: 293–301.

    Google Scholar 

  9. Hahn, D.R., M.A. McHenney and R.H. Baltz. 1991. Properties of the streptomycete temperate bacteriophage FP43. J. Bacteriol., in press.

  10. Hahn, D.R., P.J. Solenberg and R.H. Baltz. 1991. Tn5099, anxylE promoter probe transposon forStreptomyces spp. (manuscript in preparation).

  11. Hopwood, D.A., M.J. Bibb, K.F. Chater, T. Kieser, C.J. Bruton, H.M. Kieser, D.J. Lydiate, C.P. Smith, J.M. Ward and H. Schrempf. 1985. Genetic manipulation ofStreptomyces: a laboratory manual. The John Innes Foundation, Norwich, U.K.

    Google Scholar 

  12. Hopwood, D.A., F. Malpartida, H.M. Kieser, H. Ikeda, J. Duncan, I. Fujii, B.A.M. Rudd, H.G. Floss and S. Omura. 1985. Production of “hybrid” antibiotics by genetic engineering. Nature 314: 642–644.

    Google Scholar 

  13. Ingram, C., M. Brawner, P. Youngman and J. Westpheling. 1989.xylE functions as an efficient reporter gene inStreptomyces spp.: use for the study ofgalP1, a catabolite-controlled promoter. J. Bacteriol. 171: 6617–6624.

    Google Scholar 

  14. Katz, E., C.J. Thompson and D.A. Hopwood. 1983. Cloning and expression of the tyrosinase gene fromStreptomyces antibioticus inStreptomyces lividans. J. Gen. Microbiol. 129: 2703–2714.

    Google Scholar 

  15. Kuhstoss, S. and R.N. Rao. 1991. A thiostrepton-inducible expression vector for use inStreptomyces spp. Gene, in press.

  16. Larson, J.L. and C.L. Hershberger. 1986. The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 15: 199–209.

    Google Scholar 

  17. Marie, J., J. Skamoto, S.-I. Kondo, H. Yomoto and M. Arishima. 1962. Bundlins A and B, two antibiotics produced byStreptomyces griseofuscus. nov. sp. J. Antibiot. 15: 98–102.

    Google Scholar 

  18. Martin, J.F. and P. Liras. 1989. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Ann. Rev. Microbiol. 43: 173–206.

    Google Scholar 

  19. Matsushima, P. and R.H. Baltz. 1985. Efficient plasmid transformation ofStreptomyces ambofaciens andStreptomyces fradiae protoplasts. J. Bacteriol. 163: 180–185.

    Google Scholar 

  20. Matsushima, P. and R.H. Baltz. 1989.Streptomyces lipmanii expresses two restriction systems that inhibit plasmid transformation and bacteriophage plaque formation. J. Bacteriol. 171: 3128–3132.

    Google Scholar 

  21. Matsushima, P., K.L. Cox and R.H. Baltz. 1987. Highly transformable mutants ofStreptomyces fradiae defective in several restriction systems. Mol. Gen. Genet. 206: 393–400.

    Google Scholar 

  22. McHenney, M.A. and R.H. Baltz. 1988: Transduction of plasmid DNA inStreptomyces spp. and related genera by bacteriophage FP43. J. Bacteriol. 170: 2276–2282.

    Google Scholar 

  23. McHenney, M.A. and R.H. Baltz. 1989. Transduction of plasmid DNA in macrolide producing streptomycetes. J. Antibiot. 42: 1725–1727.

    Google Scholar 

  24. McHenney, M.A. and R.H. Baltz. 1991. Transduction of plasmid DNA containing theermE gene and expression of erythromycin resistance inStreptomyces spp. (manuscript in preparation).

  25. Muth, G., B. Nussbaumer, W. Wohlleben and A. Pühler. 1989. A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol. Gen. Genet. 219: 341–398.

    Google Scholar 

  26. Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd edn., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  27. Seno, E.T. and R.H. Baltz. 1989. Structural organization and regulation of antibiotic biosynthesis and resistance genes in actinomycetes. In: Regulation of Secondary Metabolism in Actinomycetes (Shapiro, S., ed.), pp. 1–48, CRC Press, Boea Raton, FL.

    Google Scholar 

  28. solenberg, P.J. and R.H. Baltz. 1991. Transposition of Tn5096 and other IS493 derivatives inStreptomyces griseofuscus. J. Bacteriol. 173: 1096–1104.

    Google Scholar 

  29. Solenberg, P.J. and S.G. Burgett. 1989. Method for selection of transposable DNA and characterization of a new insertion sequence, IS493, fromStreptomyces lividans. J. Bacteriol. 171: 4807–4813.

    Google Scholar 

  30. Stanzak, R., P. Matsushima, R.H. Baltz and B.E. Schoner. 1990. DNA homology and bacteriophage host range relationships among erythromycin-producing actinomycetes. J. Gen. Microbiol. 136: 1899–1904.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, D.R., Solenberg, P.J., McHenney, M.A. et al. Transposition and transduction of plasmid DNA inStreptomyces spp.. Journal of Industrial Microbiology 7, 229–234 (1991). https://doi.org/10.1007/BF01577649

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01577649

Key words

Navigation