Skip to main content
Log in

Characterization and forms of JC3, a newMethanoarcina isolate: Comparison withMethanosarcina mazei strains S-6T MC3, and LYC

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A new methanogenic isolate termed JC3 is described. It is aMethanosarcina as demonstrated by morphologic (light and electron microscopy), physiologic, and DNA characteristics. It belongs to the speciesM. mazie according to DNA-base composition, DNA-DNA homology, and antibiotic sensitivity spectrum. JC3 can be considered a newM mazei strain, since it differs from other well-characterized strains of this species in the following phenotypic features: conversion from packets to single cells, lamina formation, antigenic fingerprint of whole cells, and antigen pattern (immunoblot) of cell extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Aldrich HC, Robinson RW, Williams DS (1986) Ultrastructure ofMethanosarcina mazei. Syst Appl Microbiol 7:314–319

    Google Scholar 

  2. Anderson TF (1951) Techniques for the preservation of three dimensional structures in preparing specimens for electron microscopy. New York: Trans NY Acad Sci 13:130–139

    Google Scholar 

  3. Boone DA, Math RA (1989) Methanosarcinaceae. In: Holt JG, Staley JT (eds) Bergey's manual of systematic bacteriology, vol 3. Baltimore: Williams and Wilkins, pp 2198–2216

    Google Scholar 

  4. Boone DR, Whitman WB (1988) Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38:212–219

    Google Scholar 

  5. Cairó J, Macario, AJL, Bardulet M, Conway de Macario E, París JM (1991) Psychrophilic ecosystems of interest for wastewater treatment: microbiologic and immunologic elucidation of their methanogenic flora. Syst Appl Microbiol 14:85–92

    Google Scholar 

  6. Gander JE (1984) Gel protein stains: glycoproteins. Methods Enzymol 104:447–448

    Google Scholar 

  7. Gersten DM, Wolf PH, Zapolski EJ (1987) Differences in protein staining by Coomassie brilliant blue and neutron activated Coomassie brilliant blue dyes. Electrophoresis 8:545–551

    Google Scholar 

  8. Glauert AM, Glauert RH (1958) Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol 4:409–414

    Google Scholar 

  9. Harris JE (1987) Spontaneous disaggregation ofMethanosarcina mazei S-6 and its use in the development of genetic techniques forMethanosarcina spp. Appl Environ Microbiol 53:2500–2504

    Google Scholar 

  10. Hilpert R, Winter J, Hammes W, Kandler O (1981) The sensitivity of archaebacteria to antibiotics. Zbl Bakt Hyg, I Abt Orig C2:11–20

    Google Scholar 

  11. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in Microbiology, vol 3B. New York: Academic Press, pp 117–132

    Google Scholar 

  12. Jarrell KF, Hamilton EA (1985) Effect of gramicidin on methanogenesis by various methanogenic bacteria. Appl Environ Microbiol 50:179–182

    Google Scholar 

  13. Jarrell KF, Kalmokoff ML (1988) Nutritional requirements of the methanogenic archaebacteria. Can J Microbiol 34:557–576

    Google Scholar 

  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  15. Liu Y, Boone DR, Sleat R, Mah RA (1985)Methanosarcina mazei LYC, a new methanogenic isolate which produces a disaggregating enzyme. Appl Environ Microbiol 49:608–613

    Google Scholar 

  16. Macario AJL, Conway de Macario E (1983) Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probes. Syst Appl Microbiol 4:451–458

    Google Scholar 

  17. Macario AJL, Conway de Macario E (1985) Antibodies for methanogenic biotechnology. Trends Biotechnol 3(8):204–208

    Google Scholar 

  18. Macario AJL, Conway de Macario E (1985) Monoclonal antibodies of predefined molecular specificity for identification and classification of methanogens and for probing their ecologic niches. In: Macario AJL, Conway de Macario E (eds) Monoclonal antibodies against bacteria, vol II. Orlando: Academic Press, pp 213–217

    Google Scholar 

  19. Maestrojuán GM, Boone DR (1991) Characterization ofMethanosarcina barkeri MST and 227,Methanosarcina mazei S-6T, andMethanosarcina vacuolata Z-761T. Int J Syst Bacteriol 41:267–274

    Google Scholar 

  20. Mah RA (1980) Isolation and characterization ofMethanococcus mazei. Curr Microbiol 3:321–326

    Google Scholar 

  21. Mah RA, Smith MR, Baresi L (1978) Studies on an acetatefermenting strain ofMethanosarcina. Appl Environ Microbiol 35:1174–1184

    Google Scholar 

  22. Mayerhofer LE, Macario AJL, Conway de Macario E (1992) Lamina, a novel multicellular form ofMethanosarcina mazei S-6. J Bacteriol 174:3009–3014

    Google Scholar 

  23. Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Environ Microbiol 27:985–987

    Google Scholar 

  24. Pecher T, Böck A (1981) In vivo susceptibility of halophilic and methanogenic organisms to protein synthesis inhibitors. FEMS Microbiol Lett 10:295–297

    Google Scholar 

  25. Robinson RW (1986) Life cycles in the methanogenic archaebacteriumMethanosarcina mazei. Appl Environ Microbiol 52:17–27

    Google Scholar 

  26. Robinson RW, Aldrich HC, Hurst SF, Bleiweis AS (1985) Role of the cell surface ofMethanosarcina mazei in cell aggregation. Appl Environ Microbiol 49:321–327

    Google Scholar 

  27. Scherer PA, Bochem HP (1983) Ultrastructure investigation of 12Methanosarcinae and related species grown on methanol for occurrence of polyphosphatelike bodies. Can J Microbiol 29:1190–1199

    Google Scholar 

  28. Segrest JP, Jackson RL (1972) Molecular weight determination of glycoproteins by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Methods Enzymol 28:54–63

    Google Scholar 

  29. Sowers KR, Gunsalus RP (1988) Adaptation for growth at various saline concentrations by the archaebacteriumMethanosarcina thermophila. J Bacteriol 170:998–1002

    Google Scholar 

  30. Touzel JP, Albagnac G (1983) Isolation and characterization ofMethanococcus mazei strain MC3. FEMS Microbiol Lett 16:241–245

    Google Scholar 

  31. Towbin H, Gordon J (1984) Immunoblotting and dot immunobinding—current status and outlook. J Immunol Methods 72:313–340

    Google Scholar 

  32. Winfrey MR (1984) Microbial production of methane. In: Atlas RM (ed) Petroleum microbiology. New York: Macmillan, pp 153–219

    Google Scholar 

  33. Woese CR, Kandler O, Wheelis MC (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Google Scholar 

  34. Xun L, Boone DR, Mah RA (1988) Control of the life cycle ofMethanosarcina mazei S-6 by manipulation of growth conditions. Appl Environ Microbiol 154:2064–2068

    Google Scholar 

  35. Zehnder AJB, Ingvorsen K, Marti T (1982) Microbiology of methane bacteria. In: Hughes DE, Stafford DA, Wheatly BI, Baader W, Lettinga G, Nyns EJ, Verstraete W, Wentworth RL (eds) Anaerobic digestion 1981. New York: Elsevier Biomedical Press, pp 45–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarens, M., Cairó, J.J., París, J.M. et al. Characterization and forms of JC3, a newMethanoarcina isolate: Comparison withMethanosarcina mazei strains S-6T MC3, and LYC. Current Microbiology 26, 167–174 (1993). https://doi.org/10.1007/BF01577373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01577373

Keywords

Navigation