Skip to main content
Log in

Influence of the tank shape on the electrostatic field generated by space charge

Einfluß der Behälterform auf das elektrostatische Feld infolge einer Raumladung

  • Published:
Archiv für Elektrotechnik Aims and scope Submit manuscript

Contents

The paper provides results of calculations of electric field for parallelepiped and ellipsoidal tanks. The calculations reported in the paper indicate that even at a relatively small volumetric density of charge (q=100 μC/m3) the intensity of the electric field in the vapour/air mixture may exceed the critical value (3 MV/m), which may cause a spark discharge. They also show the maximum of the electric field intensity, the maximum potential and energy after the change in shape of the tank, while the volume of the stored liquid remains the same. The calculations of these quantities can be used as a basis for reduction or elimination of the electrostatic ignition hazard.

Übersicht

Der Beitrag behandelt elektrische Felder in Behältern von der Form eines Parallelepipeds und eines Ellipsoids. Die Berechnungen zeigen, daß selbst bei relativ kleinen Werten der Raumladung (100 μC/m3) die elektrische Feldstärke im Dampf-Luftgemisch den kritischen Wert (3 ÖMV/m) überschreiten und einen Durchschlag verursachen kann. Außerdem werden die Maxima der elektrischen Feldstärke, des Potentials und der Energie in Abhängigkeit der Behälterform angegeben unter der Voraussetzung, daß das Volumen der enthaltenen Flüssigkeit konstant bleibt. Die Rechenergebnisse lassen sich als Basis für die Verminderung oder Elimination der Gefahr von Überschlägen verwenden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, B, C :

factors of the ellipsoidal tank

a, b, H :

length, width and height of the parallelepiped tank, respectively [m]

E :

electrical field strength [V/m]

h :

liquid height in the tank [m]

q :

volumetric charge density [C/m3]

R :

radius of the sphere [m]

V :

electric potential [V]

W E :

electric field energy [J]

V :

volume of the tank

ε r :

relative dielectric constant

ε O :

absolute dielectric constant 8.854×10−12 [As/Vm]

References

  1. Loeb, L.: Staticzeskaja elektrizacja. Gosenegoizdat. Moskwa 1963

    Google Scholar 

  2. Klinkenberg, A.; Van der Minne, J. L.: Electrostatics in the Petroleum Industry. Elsevier, 1958

  3. Leonard, J. T.: Static Electricity in Hydrocarbon Liquids and Fuels. J. of Electrostatics 10 (1981) 17–30

    Google Scholar 

  4. Tagaki, T.; Murata, H. et al.: Reliability improvement of 500 kV large capacity power transformer. CIGRE Paper 12-02, 1978

  5. Vallenga, S.: Estimating the electric field inside a rectangular tank with boundaries at zero potential. Appl. Sci. Res. 9 (1961) 35–44

    Google Scholar 

  6. Carruthers, J.; Wigley, K.: The estimation of electrostatic potentials, field and energies in rectangular metal tank contaning charged fuel. J. of the Institute of Petroleum 48 (1962) 180–195

    Google Scholar 

  7. Asano, K.: Electrostatic potential and field in a cylinder tank containing charged liquid. Proc. IEE 124 (1977) 1277–1281

    Google Scholar 

  8. Butterworth, G.; Brown, K.; Chubb, J.: Assessment of electrostatic ignition hazards during tank filling with the aid of computer modelling. Journal of Electrostatic 13 (1982) 9–27

    Google Scholar 

  9. Buzbee, F.; Dorr, J.; George, J.; Golub, G.: The Direct Solution of Discrete Poisson Equation on Irregular Regions. SIAM J., Numer. Anal. 8 (1971) 722–736

    Google Scholar 

  10. Proskurowski, W.; Widlund, O.: On the Numerical Solution of Helmholtz's Equation by the Capacitance Matrix Method. Mathematics of Computat. 30 (1976) 433–468

    Google Scholar 

  11. Widlund, O.; O'Leary, D.: Capacitance Matrix Methods for the Helmholtz Equation on General Three-Dimensional Regions. Research Report COO-3077-155, New York University, 1978

  12. Widlund, O.; O'Leary, D.: Algorithm 572. ACM Trans. on Mathematical Software 7 (1981) 239–246

    Google Scholar 

  13. O'Leary, D.; Widlund, O.: Capacitance Matrix Methods for the Helmholtz Equation on General Three Dimensional Regions. Mathematics of Computat. 33 (1979) 849–879

    Google Scholar 

  14. Crofts, D. W.: The static electrification phenomena in power transformers. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Claymont, Delaware (1986) 222–236

  15. Higaki, M.; Kako, Y.; Moriyama, M.; Hirano, M.; Hiraishi, K.; Kurita, K.: Static electrification and partial discharges caused by oil flow in forced oil cooled core type transformers. IEEE PAS, Vol. PAS-98, 4 (1979) 1259–1266

    Google Scholar 

  16. Kędzia, J.: Investigation of an electrostatic properties of transformer oil in the rotating disk system. IEEE EI 24 (1989) 59–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kędzia, J., Ŀukaniszyn, M. Influence of the tank shape on the electrostatic field generated by space charge. Archiv f. Elektrotechnik 75, 383–386 (1992). https://doi.org/10.1007/BF01576108

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01576108

Keywords

Navigation