Skip to main content
Log in

Coupled magneto-thermal field computation in three-phase gas insulated cables

Part 1: Finite element formulation

Berechnung des gekoppelten magnetisch-thermischen Feldes dreiphasiger gasisolierter Kabel

Teil 1: Lösungsansatz mit finiten Elementen

  • Published:
Archiv für Elektrotechnik Aims and scope Submit manuscript

Contents

A numerical procedure employing the finite element technique is developed for the computation of the coupled magnetothermal field in three-phase gas insulated cables. The finite element formulation of both the electromagnetic and temperature field problems, the iterative procedure and the effective thermal conductivity of the insulation gas needed for the solution of the problem are presented here. Calculations made with the proposed method are presented in Part 2.

Übersicht

Es wird ein auf der Methode der finiten Elemente basierendes numerisches Verfahren zur Berechnung des gekoppelten magnetisch-thermischen Feldes dreiphasiger gasisolierter Kabel entwickelt. Hierzu werden der Lösungsansatz mit finiten Elementen für das elektromagnetische Feld und das Temperaturfeld, das Iterationsverfahren und die zur Lösung des Problems benötigte effektive thermische Leiftähigkeit des Isoliergases angegeben. Berechnungsergebnisse mit der vorgeschlagenen Methode werden in Teil 2 vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flatabo, N.: Transient heat conduction problems in power cables solved by the finite element method. IEEE Trans. Power Appar. Syst. 92 (1973), 56–63

    Google Scholar 

  2. Mitchell, J.; Abdel-Hadi, O.: Temperature distribution around buried cables. IEEE Trans. Power Appar. Syst. 98 (1979) 1158–1166

    Google Scholar 

  3. Sroka, J.: The finite element method in unbounded temperature field of power cables. Arch. Elektrotech. 67 (1984) 1–4

    Google Scholar 

  4. Tarasiewicz, E.; Kuffel, E.; Grzybowski, S.: Calculation of temperature distribution within cable trench backfill and the surrounding soil. IEEE Trans. Power Appar. Syst. 104 (1985) 1973–1978

    Google Scholar 

  5. Anders, G.; Caaban, M.; Bedard, N.; Ganton, R.: New approach to ampacity evaluation of cables in ducts using finite element technique. IEEE Trans. Power Delivery 2 (1987) 969–975

    Google Scholar 

  6. Weiss, J.; Csendes, Z.: A one-step finite element method for multiconductor skin effect problems. IEEE Trans. Power Appar. Syst. 101 (1982) 3796–3803

    Google Scholar 

  7. Konrad, A.: Integrodifferential finite element formulation of two-dimensional steady-state skin effect problems. IEEE Trans. Magn. 18 (1982) 284–289

    Google Scholar 

  8. Weiss, J.; Garg, V.; Sternheim, E.: Eddy current loss calculation in multi-conductor systems. IEEE Trans. Magn. 19 (1983) 2674–2677

    Google Scholar 

  9. Labridis, D.; Dokopoulos, P.: Finite element computation of field, losses and forces in a three-phase gas cable with non-symmetrical conductor arrangement. IEEE Trans. Power Delivery 3 (1988) 1326–1333

    Google Scholar 

  10. Tarasiewicz, E.; Poltz, J.: Mutually constrained partial differential and integral equations for an exterior field problem. IEEE Trans. Magn. 19 (1983) 2307–2310

    Google Scholar 

  11. Garg, V.; Wiess, J.; Del Vecchio, R.; Raymond, J.: Magnetothermal coupled finite element calculations in multiconductor systems. IEEE Trans. Magn. 23 (1987) 3296–3298

    Google Scholar 

  12. Stoll, R.: The analysis of eddy currents. London, Clarendon Press 1974

    Google Scholar 

  13. Silvester, P.; Ferrari, R.: Finite elements for electrical engineers. Cambridge, Cambridge University Press 1984

    Google Scholar 

  14. Strang, G.; Fix, G.: Analysis of the finite element method. Cambridge, Prentice-Hall 1973

    Google Scholar 

  15. Zienkiewicz, O.: The finite element method. New York, McGraw-Hill 1977

    Google Scholar 

  16. Rao, S.: The finite element method in engineering. Oxford, Pergamon Press 1982

    Google Scholar 

  17. Fukuda, N.: Ampacity of direct buried EHV cables insulated with SF6 gas. IEEE Trans. Power Appar. Syst. 89 (1970) 486–490

    Google Scholar 

  18. Doepken, H.: Calculated heat transfer characteristics of air and SF6. IEEE Trans. Power Appar. Syst. 89 (1970) 1979–1985

    Google Scholar 

  19. Graneau, P.: Underground power transmission. New York, John Wiley & Sons 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatziathanassiou, V., Labridis, D. Coupled magneto-thermal field computation in three-phase gas insulated cables. Archiv f. Elektrotechnik 76, 285–292 (1993). https://doi.org/10.1007/BF01576052

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01576052

Keywords

Navigation