Skip to main content
Log in

Diversity of free-living ‘naked’ amoeboid organisms

  • Published:
Journal of Industrial Microbiology

Abstract

Amoeboid organisms are phylogenetically diverse, some being more closely related to plants or metazoans than to each other. Amoeboid organisms are ecologically successful, having been isolated on all continents, including Antarctica, as well as being the main predators controlling bacterial populations in soil. The classification of these organisms has historically relied upon morphological characteristics. The application of electron microscopy, comparison of enzymic profiles after electrophoretic separation, and analysis of nucleic acid fractions have provided reliable bases for classifying amoeboid organisms. The extent of diversity of these organisms has been recognized, as methods to detect, culture, characterize and identify them has increased. It is reasonable to anticipate that the current 40 000 species of protists will increase substantially as amoeboid organisms are cultivated from poorly accessible niches and from extreme environs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson OR. 1994. Fine structure of the marine amoebaVexillifera telamathalassa collected from a coastal site near Barbados with a description of salinity tolerance, feeding behavior and prey. J Euk Microbiol 41: 124–128.

    Google Scholar 

  2. Baldwin KM and B Bowers. 1995. Isolation ofN-acetyl-β-hexosaminidase fromAcanthamoeba castellanii. J Euk Microbiol 42: 237–242.

    PubMed  Google Scholar 

  3. Bamforth S. 1985. The role of protozoa in litters and soils. J Protozool 32: 404–409.

    Google Scholar 

  4. Baverstock PR, S Illana, PE Christy, BS Robinson and AM Johnson. 1989. srDNA evolution and phylogenetic relationships of the genusNaegleria (Protista: Rhizopoda). Mol Biol Evol 6: 243–257.

    PubMed  Google Scholar 

  5. Beanan MJ and GB Bailey. 1995. The primary structure of anEntamoeba histolytica β-hexosaminidase A subunit. J Euk Microbiol 42: 632–636.

    PubMed  Google Scholar 

  6. Bhattacharya D, SK Stickel and ML Sogin. 1993. Isolation and molecular phylogenetic analysis of actin-coding regions fromEmiliania huxleyi, a prymnesiophyte alga, by reverse transcriptase and PCR methods. Mol Biol Evol 10: 689–703.

    PubMed  Google Scholar 

  7. Butler H and A Rogerson. 1995. Temporal and spatial abundance of naked amoebae (Gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J Euk Microbiol 42: 724–730.

    Google Scholar 

  8. Bütschli O. 1880–1889. Protozoa. In: Klassen und Ordnungen des Thierreichs, vol 1–3 (Bronn HG, ed), Winter'sche, Leipzig.

    Google Scholar 

  9. Byers TJ, ER Hugo and VJ Stewart. 1990. Genes ofAcanthamoeba: DNA, RNA and protein sequences (a review). J Protozool 37: 17S-25S.

    PubMed  Google Scholar 

  10. Caron DA. Symposium introductory remarks: ‘Protistan molecular ecology and systematics.’ J Euk Microbiol 43: 87–88.

  11. Carosi G, M Scaglia, G Filice and E Willaert, 1977. A comparative electron microscope study of axenically cultivated trophozoites of freeliving amoebae of the genusAcanthamoeba andNaegleria with special reference to the speciesN. gruberi (Schardinger 1899),N. fowleri (Carter 1970) andN. jadini (Willaert et Le Ray 1973). Arch Protistenkd 119: 264–273.

    Google Scholar 

  12. Cavalier-Smith T. 1993. Kingdom protozoa and its 18 phyla. Microbiol Rev 57: 953–994.

    PubMed  Google Scholar 

  13. Chavez LA, W Balamuth and T Gong. 1986. A light and electron microscopical study of a new, polymorhic free-living amoeba,Phreatamoeba balamuthi n g, n sp. J Protozool 33: 397–404.

    PubMed  Google Scholar 

  14. Clark CG. 1990. Genomic structure and evolution ofNaegleria and its relatives. J Protozool 37: 2S-6S.

    PubMed  Google Scholar 

  15. Clark CG and GAM Cross. 1987. rRNA genes ofNaegleria gruberi are carried exclusively on a 14-kilobase-pair plasmid. Mol Cell Biol 7: 3027–3031.

    PubMed  Google Scholar 

  16. Clark CG and GAM Cross. 1988. Small-subunit ribosomal RNA sequence fromNaegleria gruberi supports the polyphyletic origin of amoebas. Mol Biol Evol 5: 512–518.

    PubMed  Google Scholar 

  17. Cordovilla P, E Valdivia, A Gonzalez-Segura, A Galvez, M Martinez-Bueno and M Maqueda. 1993. Antagonistic action of the bacteriumBacillus licheniformis M-4 toward the amoebaNaegleria fowleri. J Euk Microbiol 40: 323–328.

    PubMed  Google Scholar 

  18. Costas M and AJ Griffiths 1985. Enzyme composition and the taxonomy ofAcanthamoeba. J Protozool 32: 604–607.

    PubMed  Google Scholar 

  19. Custodio MR, G imsiecke, R Borojevic, B Rinkevich, A Rogerson and VEG Müller. 1995. Evolution of cell adhesion systems: evidence for Arg-Gly-Asp-mediated adhesion in the protozoanNeoparamoeba aestuarina. J Euk Microbiol 42: 721–724.

    PubMed  Google Scholar 

  20. Davis GM. 1995. Systematics and public health. BioScience 45: 705–714.

    Google Scholar 

  21. DeJonckheere JF. 1993. A group I intron in the SSUrDNA of someNaegleria spp demonstrated by polymerase chain reaction amplification. J Euk Microbiol 40: 179–187.

    PubMed  Google Scholar 

  22. DeJonckheere JF. 1994. Evidence for the ancestral origin of group I introns in the SSUrDNA ofNaegleria spp. J Euk Microbiol 41: 457–463.

    PubMed  Google Scholar 

  23. DeJonckheere JF. 1994. Riboprinting ofNaegleria spp: small-subunit versus large-subunit rDNA. Parasitol Res 80: 230–234.

    PubMed  Google Scholar 

  24. DeJonckheere JF. 1995. New information on the amoeboflagellateNaegleria provided by molecular biology techniques. Ann Biol 34: 21–32.

    Google Scholar 

  25. DeJonckheere J and S Brown. 1995.Willaertia minor is a species ofNaegleria. Evidence thatNaegleria flagellates can divide. Eur J Protistol 31: 58–62.

    Google Scholar 

  26. DeJonckheere J, P Pernin, M Scaglia and R Michel. 1984. A comparative study of 14 strains ofNaegleria australiensis demonstrates the existence of a highly virulent subspecies:N. australiensis italica n spp J Protozool 31: 324–331.

    PubMed  Google Scholar 

  27. DeJonckheere J, M Pussard, DG Dive and K Vickerman. 1984.Willaertia magna gen nov, sp nov (Vahlkampfiidae) a thermophilic amoeba found in different habitats. Protistologica 20: 5–133.

    Google Scholar 

  28. Drozanski WJ. 1991.Sarcobium lyticum gen nov, sp nov, an obligate intracellular bacterial parasite of small free-living amoebae. Int J Syst Bacteriol 41: 82–87.

    Google Scholar 

  29. El Kadiri G, L Joyon and M Pussard. 1992.Pernina chaumonti n gen, n sp, a new marine amoeba,Rhizopoda Heterolobosea: morphological and ultrastructural characterizations. Eur J Protistol 28: 43–50.

    Google Scholar 

  30. Fritsche TR, RK Gautom, S Seyeclirashti, DL Bergeron and TD Lindquist. 1993. Occurrence of bacterial endosymbionts inAcathamoeba spp isolated from corneal and environmental specimens and contact lenses. J Clin Microbiol 31: 1122–1126.

    PubMed  Google Scholar 

  31. Friz CT. 1992. Taxonomic analyses of seven species of family Amoebidae by isozyme characterization of electrophoretic patterns and the descriptions of a new genus and a new speciesMetamoeba n gen,Amoeba amazonas n sp. Arch Protistenkd 142: 29–40.

    Google Scholar 

  32. Fulton C. 1993.Naegleria: a research partner for cell and developmental biology. J Euk Microbiol 40: 520–532.

    Google Scholar 

  33. Gast RJ and TJ Byers. 1995. Genus- and subgenus-specific oligonucleotide probes forAcanthamoeba. Mol Biochem Parasitol 71: 255–260.

    PubMed  Google Scholar 

  34. Gautom RK and TR Fritsche. 1995. Transmissibility of bacterial endosymbionts between isolates ofAcanthamoeba spp. J Euk Microbiol 42: 452–456.

    PubMed  Google Scholar 

  35. Ginsburg GT, R Gollop, Y Yu, JM Louis, CL Saxe and AR Kimmel. 1995. The regulation ofDictyostelium development by transmembrane signalling. J Euk Microbiol 42: 200–205.

    PubMed  Google Scholar 

  36. Grell KG. 1985. Morphological changes in the plasmodial rhizopodThalassomyxa australis n gen, n sp Protistologica 21: 215–234 (in German).

    Google Scholar 

  37. Grell KG. 1991.Leucodictyon marinum n gen, n sp, a plasmodial protist with zoospore formation from the Japanese coast. Arch Protistenkd 140: 1–21.

    Google Scholar 

  38. Grell KG. 1994.Reticulamoeba gemmipara n gen, n sp, an ‘amoeboflagellate’ with reticulopoida and zoosporogenesis Arch Protistenkd 144: 55–61.

    Google Scholar 

  39. Gunderson J, G Hinkle, D Leipe, HG Morrison, SK Stickel, DA Odelson, JA Breznak, TA Nerad, M Müller and ML Sogin. 1995. Phylogeny of trichmonads inferred from small-subunit rRNA sequences. J Euk Microbiol 42: 411–415.

    PubMed  Google Scholar 

  40. Hasegawa M, T Hasimoto, J Adachi, N Iwabe and T Miyata. 1993. Early branchings in the evolution of eukaryotes: ancient divergence ofEntamoeba that lacks mitochondria revealed by protein sequence data. J Mol Evol 36: 380–388.

    PubMed  Google Scholar 

  41. Hinkle G and ML Sogin. 1993. The evolution of the Vahlkampfiidae as deduced from 16S-like ribosomal RNA analysis. J Euk Microbiol 40: 599–603.

    PubMed  Google Scholar 

  42. Hondeveld BJM, RPM Rak and FC van Duyle. 1992. Bacterivory by heterotrophic nanoflagellates in marine sediments measured by uptake of fluorescently labelled bacteria. Mar Ecol Prog Ser 89: 63–71.

    Google Scholar 

  43. Honigberg BM, W Balamuth, EC Bovee, JO Corliss, M Gojdics, RP Hall, RR Kudo, ND Levine, AR Loeblich, J Weiser and DH Wenrich. 1964. A revised classification of the phylum Protozoa. J Protozool 11: 7–20.

    PubMed  Google Scholar 

  44. International Task Force for Disease Eradication. 1993. Recommendations of the International Task Force for Disease Eradication. 42 (No. RR-16): 1–38.

    Google Scholar 

  45. Jeon KW (ed). 1973. The Biology of Amoeba. Academic Press, New York.

    Google Scholar 

  46. Kudo RR. 1959.Pelomyxa and related organisms. Ann NY Acad Sci 78: 474–486.

    Google Scholar 

  47. Kuspa A and WF Loomis. 1994. REMI-RFLP mapping in theDictyostelium genome. Genetics 138: 665–674.

    PubMed  Google Scholar 

  48. Levine ND, JO Corliss, FEG Cox, G Deroux, J Grain, BM Honigberg, GF Leedale, AR Loeblich III, J Lom, DH Lynn, EG Merinfeld, FC Page, G Poljansky, V Sprague, J Vavra and FG Wallace. 1980. A newly revised classification of the protozoa. J Protozool 27: 37–58.

    PubMed  Google Scholar 

  49. Lewis KE and DH O'Day. 1996. Phagocytosis inDictyostelium: nibbling, eating and cannibalism. J Euk Microbiol 43: 65–69.

    Google Scholar 

  50. Linnaeus C. 1758. Systema Naturae. 10th edn. Brit Mus Nat History, London.

    Google Scholar 

  51. Linnaeus C. 1767. Systema Naturae. 12th edn. Brit Mus Nat History, London.

    Google Scholar 

  52. Lorch J. 1973. Some historical aspects of amoeba studies. In: The Biology of Amoeba (Jeon KW, ed), pp 1–36, Academic Press, New York.

    Google Scholar 

  53. Maitra SC, BN Krishna Prasad, SC Agarwala and SR Das. 1976. Ultrastructural studies on experimental primary amoebic meningo-encephalitis (PAME) of mouse due toNaegleria aerobia andHartmannella culbersoni. Int J Parasitol 6: 489–493.

    PubMed  Google Scholar 

  54. Marciano-Cabral F. 1988. Biology ofNaegleria spp. Microbiol Rev 52: 114–133.

    PubMed  Google Scholar 

  55. Marciano-Cabral F and DM Toney. 1994. Modulation of biological functions ofNaegleria fowleri amoebae by growth medium. J Euk Microbiol 41: 38–46.

    PubMed  Google Scholar 

  56. Mertens E, J DeJonckheere and E van Schaftingen. 1993. Pyrophosphate-dependent phosphofructokinase fromNaegleria fowleri: an AMP-sensitive enzyme. Biochem J 292: 797–803.

    PubMed  Google Scholar 

  57. Michel R and W Raether. 1985.Protonaegleria westphali gen nov, sp nov (Vahlkampfiidae) a thermophilic amoebo-flagellate isolated from freshwater habitat in India. Z Parasitenkd 71: 7005–7013.

    Google Scholar 

  58. Miller DR and AY Rossman. 1995. Systematics, biodiversity and agriculture. BioScience 45: 680–686.

    Google Scholar 

  59. Nerad TA and PM Daggett. 1979. Starch gel electrophoresis: an effective method for separation of pathogenic and nonpathogenicNaegleria strains. J Protozool 26: 613–615.

    PubMed  Google Scholar 

  60. Nerad TA, TK Sawyer, EJ Lewis and SM McLaughlin. 1995.Acanthamoeba pearcei n sp (Protozoa: Amoebida) from sewage contaminated sediments. J Euk Microbiol 42: 702–705.

    PubMed  Google Scholar 

  61. Newell PN. 1978. Genetics of the cellular slime molds. Ann Rev Genet 12: 69–93.

    PubMed  Google Scholar 

  62. Newsome AL, RL Baker, RD Miller and RR Arnold. 1985. Interactions betweenNaegleria fowleri andLegionella pneumophila. Infect Immun 50: 449–452.

    PubMed  Google Scholar 

  63. Page PC. 1981. A light- and electron-microscopical study ofProtacanthamoeba caledonica n sp, type-species ofProtacanthamoeba n g (Amoebida, Acanthamoebidae). J Protozool 28: 70–78.

    Google Scholar 

  64. Page FC. 1983. Marine Gymnamoebae. Inst Terrest Ecol, Cambridge, UK, 55 pp.

    Google Scholar 

  65. Page FC. 1986. The genera and possible relationships of the family Amoebidae with special attention to comparative ultrastructure. Protistologica 22: 301–316.

    Google Scholar 

  66. Page FC. 1987. The classification of ‘naked’ amoebae phylum Rhizopoda. Arch Protistenkd 133: 199–217.

    Google Scholar 

  67. Page FC. 1988. Taxonomic introduction. In: A New Key to Freshwater and Soil Gymnamoebae (Page FC, ed), pp 9–15, Freshwater Biol Assoc, The Ferry House, Ambleside, UK.

    Google Scholar 

  68. Patterson DJ. 1994. Protozoa: evolution and systematics. In: Progress in Protozoology (Hausmann K and N Hulsmann, eds), pp 1–14, Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  69. Pernin P, A Ataya and ML Cariou. 1992. Genetic structure of natural populations of the free-living amoeba,Naegleria lovaniensis. Evidence for sexual reproduction. Heredity 68: 173–181.

    Google Scholar 

  70. Pernin P, ML Cariou and A Jacquier. 1985. Biochemical identification and phylogenetic relationships in free-living amoebas of the genusNaegleria. J Protozool 32: 592–603.

    PubMed  Google Scholar 

  71. Preston TM, LG Cooper and CA King. 1990. Amoeboid locomotion inNaegleria gruberi: the effects of cytochalasin B on cell-substratum interactions and motile behaviour. J Protozool 37: 6S-11S.

    PubMed  Google Scholar 

  72. Raven PH. 1970. A multiple origin for plastids and mitochondria. Science 169: 641–646.

    PubMed  Google Scholar 

  73. Rivera F, L Cerva, J Martinez, G Keleti, F Lares, E Ramirez, P Bonilla, SR Graner, AK Saha and RH Glew. 1990.Naegleria lovaniensis tarasca new subspecies, and the purepecha strain, a morphological variant ofN. l. lovaniensis, isolated from natural thermal waters in Mexico. J Protozool 37: 301–310.

    PubMed  Google Scholar 

  74. Rodríguez-Zaragoza S. 1994. Ecology of free-living amoebae. Crit Rev Microbiol 20: 225–241.

    PubMed  Google Scholar 

  75. Rogerson A. 1993.Parvamoeba rugata n g, n sp. (Gymnamoebia, Thecamoebidae): an exceptionally small marine naked amoeba. Eur J Protistol 29: 446–452.

    Google Scholar 

  76. Rösel von Rosenhof AJ. 1755. Der kleine Proteus. Monatl herausgegebene Insektenbelustigungen 3: 622.

    Google Scholar 

  77. Rowbotham TJ. 1980. Preliminary report on the pathogenicity ofLegionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33: 1179–1183.

    PubMed  Google Scholar 

  78. Savage JM. 1995. Systematics and the biodiversity crisis. BioScience 45: 673–679.

    Google Scholar 

  79. Simpson BB and J Cracraft. 1995. Systematics: the science of biodiversity. BioScience 45: 670–672.

    Google Scholar 

  80. Singh BN. 1975. Pathogenic and Non-Pathogenic Amoebae. John Wiley and Sons, New York.

    Google Scholar 

  81. Tyndall RL and EL Domingue. 1982. Cocultivation ofLegionella pneumophila and free-living amoebae. Appl Environ Microbiol 44: 954–959.

    PubMed  Google Scholar 

  82. Visvesvara GS and GR Healy. 1975. Comparative antigenic analysis of pathogenic and free-livingNaegleria species by gel diffusion and immunoelectrophoresis techniques. Infect Immun 11: 95–108.

    PubMed  Google Scholar 

  83. Visvesvara GS, FL Schuster and AJ Martinez. 1993.Balamuthia mandrillaris, n g, n sp, agent of amebic meningoencephalitis in humans and other animals. J Euk Microbiol 40: 504–514.

    PubMed  Google Scholar 

  84. Willumsen NBS, F Siemensma and P Suhr-Jessen. 1982. A multinucleate amoebaParachaos zoochlorellae n gen, n sp, n comb Willumsen 1982 and a proposed division of the genusChaos into the generaChaos andParachaos Gymnamoebia Amoebidae. Arch Protistenkd 134: 303–313.

    Google Scholar 

  85. Woese CR. 1987. Bacterial evolution. Microbiol Rev 51: 221–271.

    PubMed  Google Scholar 

  86. Woodworth TW, WE Keefe and SG Bradley. 1982. Characterization of proteins ofNaegleria fowleri: relationships between subunit size and charge. J Protozool 29: 246–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, S., Marciano-Cabral, F. Diversity of free-living ‘naked’ amoeboid organisms. Journal of Industrial Microbiology & Biotechnology 17, 314–321 (1996). https://doi.org/10.1007/BF01574706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01574706

Keywords

Navigation