Skip to main content
Log in

Actinomycete diversity associated with foaming in activated sludge plants

  • Published:
Journal of Industrial Microbiology

Abstract

Large numbers of mycolic acid-containing actinomycetes were isolated from foam and scum samples taken from three activated-sludge sewage-treatment plants using several selective isolation media. Organisms presumptively identified as gordonae formed the dominant population in all of the samples. A representative set of these strains have chemical properties consistent with their classification in the genusGordona. Forty-eight of theGordona strains were compared through 165 unit characters with the type strains of validly described species ofGordona. The resultant data were examined using the Jaccard and simple matching coefficients and clustering achieved using the unweighted pair group method with arithmetic averages algorithm. The numerical classification was only marginally affected by the statistics used or by test error, estimated as 3.92%. The isolates were assigned to five multi-membered and 28 single-membered clusters defined by the simple matching coefficient at the 89% similarity level. With few exceptions, the isolates were sharply separated from theGordona marker strains. Essentially the same classification was obtained when the test strains were examined using a Curie-point pyrolysis mass spectrometric procedure. It can be concluded that the gordonae form a heterogeneous taxonomic group, the members of which can be distinguished from representatives of validly described species ofGordona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann RI, W Ludwig and KH Schleifer. 1995. Phylogenetic identification andin situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–149.

    Google Scholar 

  2. Anonymous. 1969. Milwaukee mystery: unusual operating problem develops. Water Sewage Works 116: 213.

  3. Bendinger B, HHM Rijnaarts, K Altendorf and AJB Zehnder. 1993. Physico-chemical cell surface adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59: 3973–3977.

    Google Scholar 

  4. Bendinger B, FA Rainey, RM Kroppenstedt, M Moormann and S Klatte. 1995.Gordona hydrophobica sp nov, isolated from biofilters for water gas treatment. Int J Syst Bacteriol 45: 544–548.

    Google Scholar 

  5. Blackall LL, AE Harbers, PF Greenfield and AC Hayward. 1988. Actinomycete scum problems in Australian activated sludge plants. Water Sci Tech 20: 493–495.

    Google Scholar 

  6. Blackall LL, JH Parlett, AC Hayward, DE Minnikin, PF Greenfield and A Harbers. 1989.Nocardia pinensis sp nov, an actinomycete found in activated sludge foams in Australia. J Gen Microbiol 135: 1547–1558.

    Google Scholar 

  7. Blackall LL, AE Harbers, PF Greenfield and AC Hayward. 1991. Activated sludge foams: effects of environmental variables on organism growth and foam formation. Env Tech 12: 241–248.

    Google Scholar 

  8. Blackall LL, SC Barker and P Hugenholtz. 1994. Phylogenetic analysis and taxonomic history ofNocardia pinensis andNocardia amarae. Syst Appl Microbiol 17: 519–525.

    Google Scholar 

  9. Blackall LL, EM Seviour, MA Cunningham, RJ Seviour and P Hugenholtz. 1994. ‘Microthrix parvicella’ is a novel, deep branching member of the actinomycete subphylum. Syst Appl Microbiol 17: 513–518.

    Google Scholar 

  10. Chun J and M Goodfellow. 1995. A phylogenetic analysis of the genusNocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45: 240–245.

    PubMed  Google Scholar 

  11. Chun J, E Atalan, AC Ward and M Goodfellow. 1993. Artificial neural network analysis of pyrolysis mass spectrometric data in the identification ofStreptomyces strains. FEMS Microbiol Lett 107: 321–326.

    PubMed  Google Scholar 

  12. Dhaliwal BS. 1979.Nocardia amarae and activated sludge foaming. J Water Polln Control Fedn 51: 344–350.

    Google Scholar 

  13. Eikelboom DH. 1975. Filamentous organisms in activated sludge. Water Res 9: 365–388.

    Google Scholar 

  14. Eikelboom DH. 1994. TheMicrothrix parvicella puzzle. Water Sci Technol 29: 271–279.

    Google Scholar 

  15. Eshuis W, PG Kistemacher and HLC Meuzelaar. 1977. Some numerical aspects of reproducibility and specificity. In: Analytical Pyrolysis (Jones CER and CA Cramers, eds), pp 151–166, Elsevier, Amsterdam.

    Google Scholar 

  16. Fuhrmann JA, JAK McCallum and AA Davis. 1992. Novel major archaebacterial group from marine plankton. Nature 356: 148–149.

    PubMed  Google Scholar 

  17. Goodfellow M. 1971. Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69: 33–80.

    PubMed  Google Scholar 

  18. Goodfellow M. 1992. The familyNocardiaceae. In: The Prokaryotes, 2nd edn (Balows A, HG Trüper, M Dworkin, W Harder and KH Schleifer, eds), pp 1188–1213, Springer-Verlag, New York.

    Google Scholar 

  19. Goodfellow M. 1995. Inter-strain comparison of pathogenic micro-organisms by pyrolysis mass spectrometry. Binary 7: 54–59.

    Google Scholar 

  20. Goodfellow M and G Alderson. 1977. The actinomycete-genusRhodococcus: a home for the ‘rhodochrous’ complex. J Gen Microbiol 100: 99–122.

    PubMed  Google Scholar 

  21. Goodfellow M, AR Beckham and MD Barton. 1982. Numerical classification ofRhodococcus equi and related actinomycetes. J Appl Bacteriol 53: 199–207.

    PubMed  Google Scholar 

  22. Goodfellow M, CR Weaver and DE Minnikin. 1982. Numerical classification of some rhodococci, corynebacteria and related organisms. J Gen Microbiol 128: 731–745.

    PubMed  Google Scholar 

  23. Goodfellow M, LJ Stanton, KE Simpson and DE Minnikin. 1990. Numerical and chemical classification ofActinoplanes and some related actinomycetes. J Gen Microbiol 136: 19–36.

    Google Scholar 

  24. Goodfellow M, J Zakrzewska-Czerwinska, EG Thomas, M Mordarski, AC Ward and AL James. 1991. Polyphasic taxonomic study of the generaGordona andTsukamurella including the description ofTsukamurella wratislaviensis sp nov. Zbl Bakteriol 275: 162–178.

    Google Scholar 

  25. Goodfellow M, J Chun, E Atalan and JJ Sanglier. 1994. Curie point pyrolysis mass spectrometry and its application to bacterial systematics. In: Bacterial Diversity and Systematics (Priest FG, A Ramos-Cormenzana and BJ Tindall, eds), pp 87–104. Plenum Press, New York.

    Google Scholar 

  26. Goodfellow M, J Chun, S Stubbs and AS Toboli. 1994. Transfer ofNocardia amarae Lechevalier and Lechevalier 1974 to the genusGordona asGordona amarae comb nov. Lett Appl Microbiol 19: 401–405.

    PubMed  Google Scholar 

  27. Gordon RE. 1967. The taxonomy of soil bacteria. In: The Ecology of Soil Bacteria (Gray TRG and D Parkinson, eds), pp 293–321, Liverpool University Press, Liverpool.

    Google Scholar 

  28. Gordon RE and JE Mihm. 1962. Identification ofNocardia caviae (Erikson) comb nov. Ann New York Acad Sci 98: 628–636.

    Google Scholar 

  29. Higgins DG and MP Lechevalier. 1969. Poorly lytic bacteriophage fromDactylosporangium thailandensis. J Virol 3: 210–216.

    PubMed  Google Scholar 

  30. Hiraoka M and K Tsumura. 1984. Suppression of actinomycete scum production: a case study at Senboku wastewater treatment plant. Water Sci Technol 16: 83–90.

    Google Scholar 

  31. Holt JG, NR Krieg, PHA Sneath, JT Staley and ST Williams (eds). 1994. Bergey's Manual of Determinative Bacteriology, 9th edn. Williams and Wilkins, Baltimore.

    Google Scholar 

  32. Huff SM, HLC Meuzelaar, DL Pope and CR Kjeldsberg. 1981. Characterisation of leukemic and normal white blood cells by Curie point pyrolysis mass spectrometry. I. Numerical evaluation of the results of a pilot study. J Anal Appl Pyrol 3: 95–110.

    Google Scholar 

  33. Jenkins D, MG Richard and GT Daigger. 1993. Manual on the Causes and Control of Activated Sludge Bulking and Foaming, 2nd edn. Lewis Publishers, Boca Raton, USA.

    Google Scholar 

  34. Kepner RI and JR Pratt. 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58: 603–615.

    PubMed  Google Scholar 

  35. Klatte S, FA Rainey and RM Kroppenstedt. 1994. Transfer ofRhodococcus aichiensis Tsukamura 1982 andNocardia amarae Lechevalier and Lechevalier 1972 to the genusGordona asGordona aichiensis comb nov andGordona amarae comb nov. Int J Syst Bacteriol 44: 769–773.

    PubMed  Google Scholar 

  36. Lechevalier HA, MP Lechevalier, PE Wyszkowski and F Mariat. 1976. Actinomycetes found in sewage-treatment plants of the activated sludge type. In: Actinomycetes: The Boundary Organisms (Arai T, ed), pp 227–247, Toppan Company, Tokyo.

    Google Scholar 

  37. Lemmer H and RM Kroppenstedt. 1984. Chemotaxonomy and physiology of some actinomycetes isolated from scumming activated sludge. Syst Appl Microbiol 5: 124–135.

    Google Scholar 

  38. Minnikin DE, IG Hutchinson, AB Caldicott and M Goodfellow. 1980. Thin-layer chromatography of methanolysates of mycolic acid-containin bacteria. J Chromat 188: 221–233.

    Google Scholar 

  39. Minnikin DE, AG O'Donnell, M Goodfellow, G Alderson, M Athalye, A Schaal and JH Parlett. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 2: 233–241.

    Google Scholar 

  40. Mori T, Y Sakai, K Hondo, I Yano and S Hashimoto. 1988. Stable abnormal foam in the activated sludge process produced byRhodococcus with strong hydrophobic properties. Environ Tech Lett 9: 1041–1048.

    Google Scholar 

  41. Nelder JC. 1979. GENSTAT Reference Manual. Scientific and Social Service Program Library, University of Edinburgh, Edinburgh.

    Google Scholar 

  42. Nesterenko OA, SA Kasumova and SI Kvasnikov. 1978. Micro-organisms of the genusNocardia and the ‘rhodochrous’ group in the soils of the Ukranian SSR, USSR. Microbiology 47: 699–703.

    PubMed  Google Scholar 

  43. Olsen GJ, DJ Lane, SJ Giovannoni, NR Pace and DA Stahl. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Ann Rev Microbiol 40: 337–365.

    Google Scholar 

  44. Orchard VA and M Goodfellow. 1974. The selective isolation ofNocardia from soil using antibiotics. J Gen Microbiol 85: 160–162.

    PubMed  Google Scholar 

  45. Pace NR, DA Stahl, DJ Lane and GJ Olsen. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microbiol Ecol 9: 1–55.

    Google Scholar 

  46. Rainey FA, J Burghardt, RM Kroppenstedt, S Klatte and E Stackebrandt. 1995. Phylogenetic analysis of the generaRhodococcus andNocardia and evidence for the evolutionary origin of the genusNocardia from within the radiation ofRhodococcus species. Microbiology 141: 523–528.

    Google Scholar 

  47. Rainey FA, S Klatte, RM Kroppenstedt and E Stackebrandt. 1995.Dietzia, a new genus includingDietzia maris com nov, formerlyRhodococcus maris. Int J Syst Bacteriol 45: 32–36.

    Google Scholar 

  48. Richard MG, D Jenkins, O Hao and G Shimizu. 1982. The Isolation and Characterisation of Filamentous Micro-organisms from Activated Sludge Bulking. Rept No. 81.2, Sanitary Eng Env Hlth Res Lab, University of California, Berkeley, USA.

    Google Scholar 

  49. Rowbotham TJ and T Cross. 1977. Ecology ofRhodococcus coprophilus sp nov. An aerobic nocardioform actinomycete belonging to the ‘rhodochrous’ complex. J Gen Microbiol 100: 123–138.

    Google Scholar 

  50. Ruimy R, P Boiron, V Boivon and R Christen. 1994. A phylogeny of the genusNocardia deduced from the analysis of small sub-unit ribosomal DNA sequences, including transfer ofNocardia amarae to the genusGordona asGordona amarae comb nov. FEMS Microbiol Lett 123: 261–268.

    Google Scholar 

  51. Sackin MJ and D Jones. 1993. Computer-assisted clasification. In: Handbook of New Bacterial Systematics (Goodfellow M and AG O'Donnell, eds), pp 361–381, Academic Press, London.

    Google Scholar 

  52. Sakai Y, T Mori, K Honda and T Matsumoto. 1983. Activated sludge flotation caused by actinomycetes. Proc Sewage Res 20: 215–217.

    Google Scholar 

  53. Sanglier JJ, DW Whitehead, GS Saddler, EV Ferguson and M Goodfellow. 1992. Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene 115: 235–242.

    PubMed  Google Scholar 

  54. Schuppler M, F Mertens, G Schön and UB Göbel. 1995. Molecular characterisation of nocardioform actinomycetes in activated sludge by 16S rRNA analysis. Microbiology 141: 513–521.

    PubMed  Google Scholar 

  55. Seviour EM, CJ Williams, RJ Seviour, JA Soddell and KC Lindrea. 1990. A survey of filamentous bacterial populations from foaming activated sludge plants in Eastern States of Australia. Water Res 24: 493–498.

    Google Scholar 

  56. Sezgin M, MP Lechevalier and PR Karr. 1988. Isolation and identification of actinomycetes present in activated sludge scum. Water Sci Technol 20: 257–263.

    Google Scholar 

  57. Sneath PHA. 1957. The application of computers to taxonomy. J Gen Microbiol 17: 201–226.

    PubMed  Google Scholar 

  58. Sneath PHA and R Johnson. 1972. The influence on numerical taxonomic similarities of errors in microbiological tests. J Gen Microbiol 72: 377–392.

    PubMed  Google Scholar 

  59. Sneath PHA and RR Sokal (eds). 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. WH Freeman, Baltimore.

    Google Scholar 

  60. Soddell JA and RJ Seviour. 1990. Microbiology of foaming in activated sludge plants. J Appl Bacteriol 69: 145–176.

    Google Scholar 

  61. Soddell JA and RJ Seviour. 1994. Incidence and morphological variability ofNocardia pinensis in Australian activated sludge. Water Res 28: 2343–2351.

    Google Scholar 

  62. Soddell JA, G Knight, W Strachan and RJ Seviour. 1992. Nocardioforms, notNocardia foams. Water Sci Tech 26: 455–460.

    Google Scholar 

  63. Sokal RR and CD Michener. 1958. A statistical method for evaluating systematic relationships. Kans Univ Sci Bull 38: 1409–1438.

    Google Scholar 

  64. Sokal RR and FJ Rohlf. 1962. The comparison of dendrograms by objective methods. Taxon XI; 33–40.

    Google Scholar 

  65. Wagner M, R Amann, P Kämpfer, B Assmus, A Hartmann, P Hutzler, N Springer and KH Schleifer. 1994. Identification andin situ detection of Gram-negative filamentous bacteria in activated sludge. Syst Appl Microbiol 17: 405–417.

    Google Scholar 

  66. Wagner M, R Erhart, W Manz, R Amann, D Wedi and KH Schleifer. 1994.in situ monitoring of the genusAcinetobacter in activated sludge. Appl Environ Microbiol 60: 792–800.

    PubMed  Google Scholar 

  67. Wanner J and P Grau. 1989. Identification of filamentous micro-organisms from activated sludge: a compromise between wishes, needs and possibilities. Water Res 23: 883–891.

    Google Scholar 

  68. Wellington EMH and ST Williams. 1978. Preservation of actinomycete inoculum in frozen glycerol. Microb Lett 6: 151–159.

    Google Scholar 

  69. Windig W, PG Kistemaker and J Haverkamp. 1983. Interpretation of a set of pyrolysis mass spectra by discriminant analysis and graphical rotation. Anal Chem 55: 387–391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodfellow, M., Davenport, R., Stainsby, F.M. et al. Actinomycete diversity associated with foaming in activated sludge plants. Journal of Industrial Microbiology & Biotechnology 17, 268–280 (1996). https://doi.org/10.1007/BF01574701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01574701

Keywords

Navigation