Skip to main content
Log in

Evidence for t-tubular conduction failure in frog skeletal muscle induced by elevated extracellular calcium concentration

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

In order to investigate the mechanism by which elevated extracellular calcium ions decrease tetanus tension in frog skeletal muscle, we made mechanical, electrophysiological and photographic measurements on single fibres or small bundles of fibres. Three lines of evidence point to t-tubular conduction failure as the primary mechanism of action of high calcium. They are (1) a decrease in amplitude of the late afterpotential, (2) attentuation or elimination of the notch and hump configuration of the early afterpotential, and (3) the appearance of wavy myofibrils in the axial core of fibres during tetanus. These effects are fully reversible and are shared by other bivalent cations. High calcium concentration causes a change in the time course of the early afterpotential but does not alter the passive cell membrane characteristics, as reflected by the time course of decay of applied hyperpolarizing pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H. &Peachey, L. D. (1973) Reconstruction of the action potential of frog sartorius muscle.J. Physiol., Lond. 235, 103–31.

    Google Scholar 

  • Bezanilla, F., Caputo, C., Gonzalez-Serratos, H. &Venosa, R. A. (1972) Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog.J. Physiol., Lond. 233, 507–23.

    Google Scholar 

  • Bianchi, C. P. &Narayan, S. (1982a) Muscle fatigue and the role of the transverse tubules.Science 215, 295–6.

    PubMed  Google Scholar 

  • Bianchi, C. P. &Narayan, S. (1982b) Possible role of the transverse tubules in accumulating calcium released from the terminal cisternae by stimulation and drugs.Canad. J. Physiol. Pharmacol. 60, 503–7.

    Google Scholar 

  • Brown, L., Gonzalez-Serratos, H. &Huxley, A. F. (1984) Structural studies of the waves in striated muscle fibres shortened passively below their slack length.J. Musc. Res. Cell Motility 5, 273–92.

    Google Scholar 

  • Frankenhaueser, B. &Lännergren, J. (1967) The effect of calcium on the mechanical response of single twitch muscle fibres ofXenopus laevis.Acta Physiol. Scand 69, 242–54.

    PubMed  Google Scholar 

  • Freygang, W. H., Goldstein, D. A. &Hellam, D. C. (1964a) The after-potential that follows trains of impulses in frog muscle fibers.J. gen. Physiol. 47, 929–52.

    PubMed  Google Scholar 

  • Freygang, W. H., Goldstein, D. A., Hellam, D. C. &Peachey, L. D. (1964b) The relation between the late after-potential and the size of the transverse tubular system of frog muscle.J. gen. Physiol. 48, 235–63.

    PubMed  Google Scholar 

  • Gage, P. W. &Eisenberg, R. S. (1969) Action potentials, afterpotentials, and excitation-contraction coupling in frog sartorius fibers without transverse tubules.J. gen. Physiol. 53, 298–310.

    PubMed  Google Scholar 

  • Gonzalez-Serratos, H. (1966) Inward spread of contraction during a twitch.J. Physiol. Lond. 185, 20–21P.

    Google Scholar 

  • Gonzalez-Serratos, H. (1971) Inward spread of activation in vertebrate muscle fibres.J. Physiol. Lond. 212, 777–99.

    PubMed  Google Scholar 

  • Gonzalez-Serratos, H. (1983) Inward spread of activation in twitch skeletal muscle fibers. InHandbook of Physiology, Section 10 (edited byPeachey, L.) American Physiological Society.

  • Gonzalez-Serratos, H., delCarmen Garcia, M., Somlyo, A., Somlyo, A. P. &Mcclellan, G. (1981) Differential shortening of myofibrils during development of fatigue.Biophys. J. 33, 224a.

    Google Scholar 

  • Gordon, A. M., Huxley, A. F. &Julian, F. J. (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres.J. Physiol. Lond. 184, 170–92.

    PubMed  Google Scholar 

  • Heiny, J. A. &Vergara, J. (1982) Optical signals from surface and T system membranes in skeletal muscle fibers.J. gen. Physiol. 80, 203–30.

    PubMed  Google Scholar 

  • Hellam, D. C., Goldstein, D. A., Peachey, L. D. &Freygang, W. H. (1965) The suppression of the late after-potential in rubidium-containing frog muscle fibers.J. gen. Physiol. 48, 1003–10.

    PubMed  Google Scholar 

  • Hille, B., Woodhull, A. M. &Shapiro, B. I. (1975) Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH.Philos. Trans. Roy. Soc. Lond. B270, 301–18.

    Google Scholar 

  • Howell, J. N., Howell, S. G., Shankar, A. &Wei, F. (1982) Evidence for t-tubular conduction failure in frog muscle in the presence of elevated extracellular Ca2+ concentration.Biophys. J. 37, 123a.

    Google Scholar 

  • Howell, J. N. &Jenden, D. J. (1967) T-tubules of skeletal muscle: morphological alterations which interrupt excitation-contraction coupling.Fedn. Proc. 26, 553.

    Google Scholar 

  • Howell, J. N., Shankar, A. &Molefhe, T. (1983) Effects of elevated extracellular calcium on early and late afterpotentials in frog skeletal muscle.Biophys. J. 41, 180a.

    Google Scholar 

  • Howell, J. N. &Snowdowne, K. W. (1981) Inhibition of tetanus tension by elevated extracellular calcium concentration.Am. J. Physiol. 240, C193-C200.

    PubMed  Google Scholar 

  • Huxley, A. F. &Gordon, A. M. (1962) Striation pattern in active and passive shortening of muscle.Nature, Lond. 193, 280–1.

    Google Scholar 

  • Kirsch, G. E., Nichols, R. A. &Nakajima, S. (1977) Delayed rectification in the transverse tubules. Origin of the late afterpotential in frog skeletal muscle.J. gen. Physiol. 70, 1–22.

    PubMed  Google Scholar 

  • Lüttgau, H. C. (1963) The action of calcium ion on potassium contractures of single muscle fibres.J. Physiol. Lond. 168, 679–97.

    PubMed  Google Scholar 

  • Persson, A. (1963) The negative after-potential of frog skeletal muscle fibres.Acta Physiol. Scand. 58, Suppl.205, 3–32.

    Google Scholar 

  • Sandow, A. (1964) Potentiation of muscular contraction.Archs phys. med. Rehab. 45, 62–1.

    Google Scholar 

  • Taylor, S. R. &Rüdel, R. (1970) Striated muscle fibers: inactivation of contraction induced by shortening.Science, N.Y. 167, 882–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howell, J.N., Shankar, A., Howell, S.G. et al. Evidence for t-tubular conduction failure in frog skeletal muscle induced by elevated extracellular calcium concentration. J Muscle Res Cell Motil 8, 229–241 (1987). https://doi.org/10.1007/BF01574591

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01574591

Keywords

Navigation