Skip to main content
Log in

On a mathematical model of squirrel-cage induction motors

Über ein mathematisches Modell des Käfigläufermotors

  • Published:
Archiv für Elektrotechnik Aims and scope Submit manuscript

Contents

This paper presents a mathematical model of 3-phase squirrel-cage induction motor accounting for a very high number of space harmonics in which, due to application of a special transformation of voltages and currents, a differential equation system with constant coefficients is obtained. The number of space harmonics is so high that it is possible to perform a direct computation of the alternating component of the electromagnetic torque which decides on the parasitic synchronous torque.

An application example of this model for the analysis of steady and dynamic states of a concrete squirrel-cage motor is given.

Übersicht

Im Artikel wird ein mathematisches Modell dreiphasiger Käfigläufermotoren mit Berücksichtigung einer großen Zahl räumlicher Harmonischer vorgestellt. Unter Anwendung einer speziellen Transformation der elektrischen Spannungen und Ströme erhält man ein Gleichungssystem mit konstanten Koeffizienten Die Zahl der räumlichen Harmonischen ist so groß, daß die Berechnung der Wechselkomponenten des elektromagnetischen Moments und damit des parasitären synchronen Moments möglich ist. Die Anwendung des mathematischen Modells wird anhand eines Beispiels für dynamischen und statischen Betrieb vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(a = e^{j\frac{{2\pi }}{3}} ,b = e^{j\frac{{2\pi }}{N}} \) N :

number of bars of the rotor cage

L 8 :

total self inductance of stator phase winding

M 8 :

mutual inductance of stator windings

R rg,L rg :

resistance and leakage inductance of a rotor end ring segment-respectively

R b,L b :

resistance and leakage inductance of a rotor cage bar-respectively\(k_{rk} = \sin \left( {k\frac{\pi }{N}} \right)\)

k=0,1, ...:

N—1 number of the rotor currents symmetric component and theM sr matrix column corresponding to it\(\mu _0 = 4 \cdot 10^{ - 7} \frac{H}{m}\)

l :

equivalent axial length of stator core

δ:

equivalent width of air-gap

p :

pole pair numer

z :

number of turns per phase

v :

order of harmonic

k sv :

stator winding coefficient for thev-th harmonic

k rv :

rotor winding coefficient for thev-th harmonic

k skv :

skewness coefficient for thev-th harmonic

U s :

stator voltage vector in symmetrical components

U r :

rotor voltage vector in symmetrical components

i s :

stator current vector in symmetrical components

O :

zero matrix

R s :

stator resistance matrix

R r :

rotor resistance matrix

LL s :

stator inductance matrix

L rr :

rotor inductance matrix

M sr :

matrix of stator-rotor mutual inductances

T e :

electromagnetic torque

T m :

motor load torque

ϕ:

rotor position angle

ϕ0 :

initial rotor position angle

\(\omega = \frac{{d\varphi }}{{dt}}\) :

rotor angular velocity

(*):

conjugation index of a complex number

Re {y}:

real part of a complex number

Im {y}:

imaginary part of a complex number

T :

transposition index

[X]x :

highest integer not greater thanX and of the same sign asX \(v(\bmod N) = v - \left[ {\frac{v}{N}} \right]^x \cdot N\)

U :

r.m.s. value of the phase voltage

ω u :

pulsation of supply voltage

References

  1. Brown, J. E.; Jha, C. S.: Generalized rotating field theory of poly-phase induction motors and its relationship to symmetrical components theory. IEEE Proc. 109 (1962) 59–69

    Google Scholar 

  2. Oberretl, K.: Die Oberfeldtheorie des Käfigmotors unter Berücksichtigung der durch die Ankerrückwirkung verursachten Statoroberströme und der parallelen Wicklungswege. Arch. Elektrotech.49 (1965) 343–346

    Google Scholar 

  3. Nasar, S. A.: Electromagnetic energy Conversion inn, m-Winding double cylindrical structures in the presence of space harmonics IEEE Trans. PAS 87 (1968) 1099–1106

    Google Scholar 

  4. Barton, T. H.: Pouloujadoff, H. A.: Generalized symmetrical components transformation for cylindrical electrical machines. IEEE PAS 91 (1972) 1781–1786

    Google Scholar 

  5. Taegen, F., Hommes, E.: Das allgemeine Gleichungs-system des Käfigläufermotors unter Berücksichtigung der Oberfelder. Teil 1: Allgemeine Theorie, Teil 2: Der Einfluß der Oberfelder auf das Betriebsverhalten. Arch. Elektrotech. 55 (1972) 21–31 und 98–105

    Google Scholar 

  6. Stepina, J.: Raumzeiger in Matrizendarstellung in der Theorie der elektrischen Maschinen. Arch. Elektrotech. 55 (1972) 91–97

    Google Scholar 

  7. Späth, H.: Berechnung der Ströme und Drehmomente von Drehstromasynchronmaschinen mit Käfigläufer in stationerem Betrieb unter Berücksichtigung räumlicher Feldoberwellen. Arch. Elektrotech. 57 (1975) 165–172

    Google Scholar 

  8. Van der Merwe, F. S.: The analysis of an electric machine with a smooth air gap. Allowing for all winding MMF-Harmonics. Part 1: The Basic space vector component machine equations, Part 2: Application of the basic equations to steady — state and Transient conditions. Arch. Elektrotech. 58 (1976) 283–292 and 293–303

    Google Scholar 

  9. Sobczyk, T. J., Analysis of steady-state in electric machines. Scient. Bull. of the Univ. of Mining and Metall. No. 654 Electrification and mechanization in mining and metallurgy Bull. 97 Cracow (1977) 1–66 (in Polish)

  10. Sobczyk, T. J.; Rusek, J.: Harmonic analysis of currents and torques of squirrel-cage motors at balanced power supply. Proceedings of ICEM' 82 Part III, Budapest (1982) 775–779

  11. Sobczyk, T. J.: Infinitely dimensional linear and quadratic forms of electric machines. Rozpr. Elektrotech. 29 (1983) 697–707

    Google Scholar 

  12. Sobczyk, T. J.: Berücksichtigung des Oberwellen Luftspaltfeldes in Schleifring — Asynchronmotoren in Elektric 6/83. Berlin: VEB Verlag Technik (1983) 293–298

    Google Scholar 

  13. Rusek, J.: Drehmoment und Strom einer über Wechselrichter gespeisten Asynchron-Maschine in stationärem Betriebszustand. Arch. Elektrotech. 67 (1984) 151–180

    Google Scholar 

  14. Hommes, E.; Paap, G. C.: The analysis of the 3-phase squirrel-cage induction motor with space harmonics. Part 1: Equations developed by a new time-dependent transformation, Part 2: The influence of the apace harmonics on the transient behaviour. Arch Elektrotech. 67 (1984) 217–226 and 227–236

    Google Scholar 

  15. Drozdowski, P.: The analysis of squirrel-cage induction motor as an Auto-transformer (doctor thesis). Technical Univ. of Mining and Metallurgy. Cracow (1984) (in Polish)

  16. Sobczyk, T. J.: How to compute the time-constants of induction motors accouting for higher space harmonics. Proc. ICEM' 84 Part 3, Lausanne (1984) 1192–1195

  17. Sobczyk, T. J.: A reinterpretation of the floquet solution of the ordinary differential equation system with periodic coefficients as a Problem of an infinite matrix. Compel Vol. 5, No. 1, Bool Press Ltd. (1986) 1–22

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdowski, P., Sobczyk, T.J. On a mathematical model of squirrel-cage induction motors. Archiv f. Elektrotechnik 70, 371–382 (1987). https://doi.org/10.1007/BF01574005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01574005

Keywords

Navigation