Skip to main content
Log in

Farey nets and multidimensional continued fractions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

A multidimensional continued fraction algorithm is a generalization of the ordinary continued fraction algorithm which approximates a vector η=(y 1,...,y n ) by a sequence of vectors\(\left( {\frac{{a_{j,1} }}{{a_{j,n + 1} }}, \ldots ,\frac{{a_{j,n} }}{{a_{j,n + 1} }}} \right)\). If 1,y 1,...,y n are linearly independent over the rationals, then we say that the expansion of η isstrongly convergent if

$$\mathop {\lim }\limits_{j \to \infty } \left| {\left( {\frac{{a_{j,1} }}{{a_{j,n + 1} }}, \ldots ,\frac{{a_{j,n} }}{{a_{j,n + 1} }}} \right) - \eta } \right| = 0.$$

This means that the algorithm converges at an asymptotically faster rate than would be guaranteed just by picking a denominator at random.

The ordinary continued fraction algorithm can be defined using the Farey sequence, approximating a number by the endpoints of intervals which contain it. Analogously, we can define a Farey netF n, m to be a triangulation of the set of all vectors\(\left( {\frac{{a_1 }}{{a_{n + 1} }}, \ldots ,\frac{{a_n }}{{a_{n + 1} }}} \right)\) witha n+1 ≤m into simplices of determinant ±1, and use this algorithm to define a multidimensional continued fraction for η in which the approximations are the vertices of the simplices containing η in a sequence of Farey nets. The concept of a Farey net was proposed by A. Hurwitz, and R. Mönkemeyer developed a specific continued fraction algorithm based on it.

We show that Mönkemeyer's algorithm discovers dependencies among the coordinates of η in two dimensions, but that no continued fraction algorithm based on Farey nets can discover dependencies in three or more dimensions, and none can be strongly convergent, even in two dimensions. Thus there are no good multidimensional algorithms based on Farey nets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brentjes, A. J.: Multi-dimensional continued fraction algorithms. Mathematical Centre Tracts 145. Amsterdam: Math. Centrum. 1981.

    Google Scholar 

  2. Brun, V.: En generalisation av kjedebrøken I. Skr. Vidensk Selsk Kristiania.6. Mat. Nat. (1919).

  3. Brun, V.: En generalisation av kjedebrøken II. Skr. Vidensk Selsk Kristiania6, Mat. Nat. (1920).

  4. Ferguson, H. R. P., Forcade, R. W.: Generalization of the Euclidean algorithm to all dimensions higher than two. Bull. Amer. Math. Soc.1, 912–914 (1979).

    Google Scholar 

  5. Hurwitz, A.: Über die angenäherte Darstellung der Zahlen durch rationale Brüche. Math. Ann.44, 417–436 (1894).

    Google Scholar 

  6. Lagarias, J. C.: Geodesic Multidimensional Continued Fractions. Preprint.

  7. Mönkemeyer, R.: Über Fareynetze inn Dimensionen, Math. Nachr.11, 321–344 (1953).

    Google Scholar 

  8. Mönkemeyer, R.: Über die Strukturn-dimensionaler Fareynetze, J. Reine. Angew. Math.212 169–173 (1963).

    Google Scholar 

  9. Perron, O.: Grundlagen für eine Theorie des Jacobischen Kettenalgorithmus. Math. Ann.64, 1–76 (1907).

    Google Scholar 

  10. Schmidt, A. L.: Farey triangles and Farey quadrangles in the complex plane. Math. Scand.21, 241–295 (1967).

    Google Scholar 

  11. Szekeres, G.: Multidimensional continued fractions. Ann. Univ. Sci. Budap. Rolando Eötvös sect. math.13, 113–140 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by an NSF Graduate Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabiner, D.J. Farey nets and multidimensional continued fractions. Monatshefte für Mathematik 114, 35–61 (1992). https://doi.org/10.1007/BF01572079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01572079

Keywords

Navigation