Skip to main content
Log in

Application of boundary solution procedure in thermal field analysis

Die Anwendung der Randauflösung-Prozedur in der Analyse des Temperaturfeldes

  • Published:
Archiv für Elektrotechnik Aims and scope Submit manuscript

Contents

A new method for the thermal field analysis for the determination of the temperature distribution around a heavy-current underground cable, is given in this paper. Using finite elements in the immediate neighbourhood of the cable, it is possible to determine the temperature distribution in the whole infinite region.

The method of isoparametric elements with second order approximation is used for the numerical computations. The results obtained are more accurate than those obtained using conventional finite element methods (FEM).

The algorithm developed here can be easily adopted for the analysis of thermal field caused by underground thermal sources.

Übersicht

In diesem Aufsatz wird eine neue Methode der Feldanalyse angegeben, um die Temperaturverteilung infolge eines im Erdboden verlegen Starkstromkabels zu bestimmen. Diese Methode erlaubt die Bestimmung der Temperaturverteilung im gesamten, unendlich ausgedehnten Gebiet, obwohl die finiten Elemente nur in der unmittelbaren Umgebung des Kabels angewendet werden.

Im Programm werden die isoparametrischen Elemente gebraucht, in denen die Approximation der zweiten Ordnung angewandt wird. Die Ergebnisse sind genauer als mit der Benutzung der konventionellen Methode der finiten Elemenente. Mit dem Algorithmus, der hier dargestellt wird, kann man auch die Temperaturfelder der Heizelemente modellieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\lambda = \left\{ {\begin{array}{*{20}c} {\lambda _1 } \\ {\lambda _2 } \\ {\lambda _3 } \\ \end{array} } \right.\) :

heat permeabilty in the cable strand heat permeability in the insulation heat permeability in ground

\(q = \left\{ {\begin{array}{*{20}c} {q_1 } \\ {q_2 } \\ \end{array} } \right.\) :

power density in the cable strand power density in the insulation

p :

point in Ω

∇:

nabla

T :

transposition of nabla

T (p) :

temperature at pointp

T i={T i }:

vector of values of temperature at nodes inΩ i

T i ={T i }:

temperature at nodes onΓ j

α:

surface film conductance

n :

outwardly directed normal

F :

energetic functional

Ω :

infinite domain around the cable

Ω 0 :

infinite subdomain

Ω i :

subdomain solved with FEM

Ω i :

cable area

Г :

boundary ofΩ 0

Г 1 :

boundary ofΩ between ground and air

Г1 :

part ofГ 1 boundingЩ 0

Г1 :

part ofГ 1 boundingЩ i

Г 2 :

boundary of Ω along ψ-axis

Г2 :

part ofГ 2 boundingЩ 0

Г 3 :

boundary at infinity

Г j :

boundary betweenΩ i andΩ 0

{Ψ i }:

sequence of harmonic functions

Ψ(p):

shape function in finite elementΩ 0

Ψ j ={Ψ j }:

vector of values of Ψ(P) at nodes onΓ j

S ii ,S ij ,S jj :

submatrixes of the matrix

Q i ={Q i }:

vector denoting source density

a :

depth of laying the cable

d 2 :

diameter of the insulation

d 1 :

diameter of the conductor

References

  1. Andersen, O. W.: Finite Element Solution of Complex Potential Electric Fields. IEEE PAS Winter Meeting, New York 1977

  2. Berkhoff, J.: Linear Wave Propagation Problems and the Finite Element Method, Ch. 13. In: Finite Element Methods in Fluid Mechanics, Ed. Gallagher, R. H., Oden, J. T., Taylor, C., Zienkiewicz, O. C.. London: J. Wiley 1975

    Google Scholar 

  3. Di Napoli, A.; Mazetti, C.; Ratti, U.: Electromagnetic Field Computation of H V Resistivite Divider. International Conference on Nunmerical Methods in Electrical and Magnetic Field Problems. Santa Margherita Ligure, Italy 1976

  4. MATH SCIENCE LIBRARY. CALIFORNIA, USA, Control Data Corporation 1971, 5

  5. Mikhlin, S.: Variational Methods in Mathematical Physics. New York: Mac Millan 1964

    Google Scholar 

  6. Oliveira, E.; De Arantes, E.: Plane Stress Analysis by a General Integral Method. J. Eng. Mechnic Div. of Proc. of ASCE 1968 79–101

  7. Sikora, J.; Wincenciak, S.: Metoda Elementu Skończonego w Zastosowaniu do Analizy Pól Elektrycznych Stacjonarnych w Ośrodkach Niejcdnorodnych i Anizotropowych. Arch. Elektrotech. XXV (1976) 463–471, Warszawa

    Google Scholar 

  8. Silvester, P.; Hsieh, M.: Finite Element Solution of 2-D Exterior Field Problems. Proc. IEE 118 (1971) 1743 to 1747

    Google Scholar 

  9. Silvester, P.; Hsich, M.: Projective Solution of Integral Equations Arising in Electric and Magnetic Field Problems. J. Comp. Phys. 8 (1971) 73–82

    Google Scholar 

  10. Wood, W. L.: On the Finite Element Solution of an Exterior Boundary Value Problem. Int. J. Num. Engng. 10 (1976) 885–891

    Google Scholar 

  11. Zienkiewicz, O. C.; Kelly, D. W.; Bettes, P.: The Coupling of the Finite Element Method and Boundary Solution Procedures. Int. J. Num. Meth. Engng. 11 (1977) 553 to 375

    Google Scholar 

  12. Zienkiewicz, O. C.: The Finite Element Method in Engineering Science. London: McGraw-Hill 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krzemiński, S., Sikora, J., Sroka, J. et al. Application of boundary solution procedure in thermal field analysis. Archiv f. Elektrotechnik 62, 195–200 (1980). https://doi.org/10.1007/BF01570948

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570948

Keywords

Navigation