Skip to main content
Log in

Cyclic beta-1,6-1,3 glucans ofBradyrhizobium: Functional analogs of the cyclic beta-1,2-glucans ofRhizobium?

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

We have previously shown that species ofBradyrhizobium synthesize a novel class of cyclic beta glucans which contains both beta-1,6 and beta-1,3 glycosidic linkages [Miller KJ, Gore RS, Johnson R, Benesi AJ, Reinhold VN (1990) J Bacteriol 172:136–142]. In the present study we show that these cell-associated glucans are localized within the periplasmic compartment and that the biosynthesis of these glucans is osmotically regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Abe M, Amemura A, Higashi S (1982) Studies on cyclic beta-1,2-glucan obtained from periplasmic space ofRhizobium trifolli cells. Plant Soil 64:315–324

    Google Scholar 

  2. Ames GF-L, Prody C, Kustu S (1984) Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol 160:1181–1183

    PubMed  Google Scholar 

  3. Batley M, Redmond JW, Djordjevic SP, Rolfe BG (1987) Characterization of glycerophosphorylated cyclic beta-1,2-glucans from a fast-growingRhizobium species. Biochim Biophys Acta 901:119–126

    Google Scholar 

  4. Cangelosi GA, Martinetti G, Nester EW (1990) Osmosensitivity phenotypes ofAgrobacterium tumefaciens mutants that lack periplasmic beta-1,2-glucan. J Bacteriol 172:2172–2174

    PubMed  Google Scholar 

  5. Douglas CJ, Staneloni RJ, Rubin RA, Nester EW (1985) Identification and genetic analysis of anAgrobacterium tumefaciens chromosomal virulence region. J Bacteriol 161:850–860

    PubMed  Google Scholar 

  6. Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester E, Helinski DR, Ditta G (1986)Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes inAgrobacterium tumefaciens, Proc Natl Acad Sci USA 83:4403–4407

    Google Scholar 

  7. Dylan T, Helinski DP, Ditta GS (1990) Hypoosmotic adaptation inRhizobium meliloti requires beta-(1–2)-glucan. J Bacteriol 172:1400–1408

    PubMed  Google Scholar 

  8. Dylan T, Nagpal P, Helinski DR, Ditta GS (1990) Symbiotic pseudorevertants ofRhizobium meliloti ndv mutants. J Bacteriol 172:1409–1417

    PubMed  Google Scholar 

  9. Hanson RS, Phillips JA (1981) Chemical composition, In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds). Manual of methods for general bacteriology. Washington, DC: American Society for Microbiology, pp 328–364

    Google Scholar 

  10. Heppel LA (1968) Preparation of cells ofEscherichia coli with altered permeability. Methods Enzymol 12B:841–846

    Google Scholar 

  11. Hisamatsu M, Yamada T, Higashiura T, Ikeda M (1987) The production of acidic, O-acylated cyclosophorans [cyclic(1–2)-beta-d-glucans] byAgrobacterium andRhizobium species. Carbohydr. Res. 163:115–122

    Google Scholar 

  12. Laimins LA, Rhoads DB, Epstein W (1981) Osmotic control ofkdp operon expression inEscherichia coli. Proc Natl Acad Sci USA 78:464–468

    PubMed  Google Scholar 

  13. Lall SD, Eribo BE, Jay JM (1989) Comparison of four methods for extracting periplasmic proteins. J Microbiol Methods 9:195–199

    Google Scholar 

  14. Miller KJ, Kennedy EP, Reinhold VN (1986) Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231:48–51

    PubMed  Google Scholar 

  15. Miller KJ, Reinhold VN, Weissborn AC, Kennedy EP (1987) Cyclic glucans produced byAgrobacterium tumefaciens are substituted withsn-1-phosphoglycerol residues. Biochim Biophys Acta 901:112–118

    PubMed  Google Scholar 

  16. Miller KJ, Gore RS, Benesi AJ (1988) Phosphoglycerol substituents present on the cyclic beta-1,2-glucans ofRhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol 170:4569–4575

    PubMed  Google Scholar 

  17. Miller KJ, Gore RS, Johnson R, Benesi AJ, Reinhold VN (1990) Cell-associated oligosaccharides ofBradyrhizobium spp. J Bacteriol 172:136–142

    PubMed  Google Scholar 

  18. Paoletti LC, Short KA, Blakemore N, Blakemore RP (1987) Freeze-thawing ofAquaspirillum magnetotacticum cells selectively releases periplasmic proteins. Appl Environ Microbiol 53:2590–2592

    Google Scholar 

  19. Puvanesarajah V, Schell FM, Stacey G, Douglas CJ, Nester EW (1985) Role for 2-linked-beta-d-glucans in the virulence ofAgrobacterium tumefaciens. J Bacteriol 164:102–106

    PubMed  Google Scholar 

  20. Shapiro B, Stadtman ER (1970) Glutamine synthetase (Escherichia coli). Methods Enzymol 17A:910–922

    Google Scholar 

  21. Streeter JG (1989) Analysis of periplasmic enzymes in intact cultured bacteria and bacteroids ofBradyrhizobium japonicum andRhizobium leguminosarum biovarphaseoli. J. Gen. Microbiol. 135:3477–3484

    Google Scholar 

  22. Tully RE, Keister DL, Gross KC (1990) Fractionation of the beta-linked glucans ofBradyrhizobium japonicum and their response to osmotic potential. Appl Environ Microbiol 56:1518–1522

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, K.J., Gore, R.S. Cyclic beta-1,6-1,3 glucans ofBradyrhizobium: Functional analogs of the cyclic beta-1,2-glucans ofRhizobium?. Current Microbiology 24, 101–104 (1992). https://doi.org/10.1007/BF01570905

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570905

Keywords

Navigation