Skip to main content
Log in

Somatic mutations at a heterozygous autosomal locus in human cells occur more frequently by allele loss than by intragenic structural alterations

  • Published:
Somatic Cell and Molecular Genetics

Abstract

A human B-cell lymphoblastoid cell line heterozygous at the thymidine kinase (TK)locus (i.e., carrying one functional and one nonfunctional thymidine kinase allele) was used to study the molecular nature of mutations leading to loss of TKactivity. A total of 113 mutant clones, both spontaneous and induced, were examined by restriction enzyme mapping and by the use of a restriction fragment length polymorphism (RFLP) at the TKlocus. A majority (71%) of all mutant clones examined had lost the entire functional TKallele, becoming either homozygous or hemizygous for the nonfunctional allele. The remaining mutants had either no detectable changes (26%) or had obvious structural alterations (less than 5%) in the active TKgene. These results emphasize the importance of allele loss, presumably by mitotic chromosomal mechanisms, in mutagenesis at autosomal loci, and suggest that in vitro models for recessive somatic mutation which are based at hemizygous loci may ignore a large category of genetically significant events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Thacker, J. (1985).Mutat. Res. 150:431–442.

    PubMed  Google Scholar 

  2. Cavenee, W.K., Dryja, T.P., Phillips, R.A., Benedict, W.F., Godbout, R., Gallie, B., Murphree, A.L., Strong, L.C., and White, R.L. (1983).Nature 305:779–784.

    PubMed  Google Scholar 

  3. Koufos, A., Hansen, M.F., Lampkin, B.C., Workman, M.L., Copeland, N.G., Jenkins, N.A., and Cavenee, W.K. (1984).Nature 309:170–172.

    PubMed  Google Scholar 

  4. Orkin, S.H., Goldman, D.S., and Sallan, S.E. (1984).Nature 309:172–174.

    PubMed  Google Scholar 

  5. Reeve, A.E., Housiaux, P.J., Gardner, R.J.M., Chewings, W.E., Grindley, R.M., and Millow, L.J. (1984).Nature 309:174–176.

    PubMed  Google Scholar 

  6. Fearon, E.R., Vogelstein, B., and Feinberg, A.P. (1984).Nature 309:176–178.

    PubMed  Google Scholar 

  7. Dryja, T.P., Rapaport, J.M., Epstein, J., Goorin, A.M., Weichselbaum, B.-T., Koufos, A. and Cavenee, W.K. (1986).Am. J. Hum. Genet. 38:59–66.

    PubMed  Google Scholar 

  8. Hansen, M.F., Koufos, A., Gallie, B.L., Phillips, R.A., Fodstad, O., Brogger, A., Gedde-Dahl, T., and Cavenee, W.K. (1985).Proc. Natl. Acad. Sci. U.S.A. 82(18):6216–6220.

    PubMed  Google Scholar 

  9. Mukai, S., and Dryja, T.P. (1986).Cancer Genet. Cytogenet. (in press).

  10. Skopek, T.R., Liber, H.L., Penman, B.W., and Thilly, W.G. (1978).Biochem. Biophys. Res. Commun. 84:411–416.

    PubMed  Google Scholar 

  11. Liber, H.L., and Thilly, W.G. (1982).Mutat. Res. 94:467–485.

    PubMed  Google Scholar 

  12. Human Gene Mapping 7. (1984).Cytogenet. Cell Genet. 37:3–393.

    Google Scholar 

  13. Elliot, K., and Fitzsimons, D.W. (eds.). (1977).Purine and Pyrimidine Metabolism, CIBA Foundation Symposium No. 48.

  14. Clive, D., Johnson, K.O., Spector, J.F.S., Batson, A.G., and Moore-Brown, M.M. (1979).Mutat. Res. 59:61–73.

    PubMed  Google Scholar 

  15. Levy, J.A., Virolainen, M., and Defendi, V. (1968).Cancer 22:517–524.

    PubMed  Google Scholar 

  16. Yandell, D.W., and Little, J.B. (1986).Cancer Genet. Cytogenet. 20:231–239.

    PubMed  Google Scholar 

  17. Koch, A.L. (1982).Mutat. Res. 95:129–143.

    Google Scholar 

  18. Southern, E.M. (1975).J. Mol. Biol. 98:503–517.

    PubMed  Google Scholar 

  19. Bradshaw, H.D., Jr., and Deininger, P.L. (1984).Mol. Cell. Biol. 4:2316–2320.

    PubMed  Google Scholar 

  20. Moore, M.M., Clive, D., Hozier, J.C., Howard, B.E., Batson, G.A., Turner, N.T., and Sawyer, J. (1985).Mutat. Res. 151:161–174.

    PubMed  Google Scholar 

  21. Moore, M.M., Clive, D., Howard, B.E., Batson, G.A., and Turner, N.T. (1985).Mutat. Res. 151:147–159.

    PubMed  Google Scholar 

  22. Turner, D.R., Morley, A.A., Haliandros, M., Kutlaca, R., and Sanderson, B.J. (1985).Nature 315:343–345.

    PubMed  Google Scholar 

  23. Albertini, R.A., O'Neill, J.P., Nicklas, J.A., Heintz, N.H., and Kelleher, P.C. (1985).Nature 316:369–371.

    PubMed  Google Scholar 

  24. Fuscoe, J.C., Fenwick, R.G., Ledbetter, D.H., and Caskey, C.T. (1983).Mol. Cell. Biol. 3:1086–1096.

    PubMed  Google Scholar 

  25. Fenwick, R.G., Fuscoe, J.C., and Caskey, C.T. (1984).Somat. Cell Mol. Genet. 10:71–84.

    PubMed  Google Scholar 

  26. Simon, A.E., Taylor, M.W., Bradley, W.E.C., and Thompson, L.H. (1982).Mol. Cell. Biol. 2:1126–1133.

    PubMed  Google Scholar 

  27. Simon, A.E., Taylor, M.W., and Bradley, W.E.C. (1983).Mol. Cell. Biol. 3:1703–1710.

    PubMed  Google Scholar 

  28. Simon, A.E., and Taylor, M.W. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:810–814.

    PubMed  Google Scholar 

  29. Bradley, W.E.C, and Letovanec, D. (1982).Somat. Cell Genet. 8:51–66.

    PubMed  Google Scholar 

  30. Adair, G.M., Stallings, R.L., Nairn, R.S., and Siciliano, M.J. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:5961–5964.

    PubMed  Google Scholar 

  31. Turker, M.S., Smith, A.C., and Martin, G.M. (1984).Somat. Cell Mol. Genet. 10:55–69.

    PubMed  Google Scholar 

  32. Eves, E.M., and Farber, R.A. (1983).Somat. Cell Genet. 9:771–778.

    PubMed  Google Scholar 

  33. Meuth, M., and Arrand, J.E. (1982).Mol. Cell. Biol. 2:1459–1462.

    PubMed  Google Scholar 

  34. Nalbantoglu, J., Goncalves, O., and Meuth, M. (1983).J. Mol. Biol. 167:575–594.

    PubMed  Google Scholar 

  35. Goncalves, O., Drobetsky, E., and Meuth, M. (1984).Mol. Cell. Biol. 4:1792–1799.

    PubMed  Google Scholar 

  36. Koufos, A., Hansen, M.F., Copeland, N.G., Jenkins, N.A., Lampkin, B.C., and Cavenee, W.K. (1985).Nature 316:330–334.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yandell, D.W., Dryja, T.P. & Little, J.B. Somatic mutations at a heterozygous autosomal locus in human cells occur more frequently by allele loss than by intragenic structural alterations. Somat Cell Mol Genet 12, 255–263 (1986). https://doi.org/10.1007/BF01570784

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570784

Keywords

Navigation