Skip to main content
Log in

Transfer of genes fromPseudomonas saccharophila to construct xylose-utilizing strains ofAlcaligenes eutrophus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

About 1500 hybrid broad-host-range plasmids from a genomic library ofPseudomonas saccharophila were individually transferred by conjugation fromEscherichia coli toAlcaligenes eutrophus. Direct selection for pentose-utilizing transconjugants yielded three clones capable of growth on xylose. Growth ofP. saccharophila as well as the transconjugants ofA. eutrophus on xylose was relatively slow, exhibiting doubling times of about 9.5 h. Plasmid pGN3 harbored by one transconjugant contained a 28-kb DNA insert, 16.4 kb of which comprised the minimal information required for xylose utilization byA. eutrophus. At least thexyl genes encoding xylose isomerase and xylulokinase were located within this region, as indicated by their induction during growth ofA. eutrophus (pGN3) on xylose. Southern hybridizations with a heterologous gene probe confirmed the presence of thesexyl genes. In bothP. saccharophila andA. eutrophus (pGN3), low activities of several enzymes operating in the pentose phosphate and Entner-Doudoroff pathways might limit the rate of xylose catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Auling G, Dittbrenner M, Maarzahl M, Nokhal T, Reh M (1980) Deoxyribonucleic acid relationships among hydrogenoxidizing strains of the generaPseudomonas, Alcaligenes andParacoccus. Int J Syst Bacteriol 30:123–128

    Google Scholar 

  2. Batt CA, Jamieson AC, Vandeyar MA (1990) Identification of essential histidine residues in the active site ofEscherichia coli xylose (glucose) isomerase. Proc Natl Acad Sci USA 87:618–622

    PubMed  Google Scholar 

  3. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    PubMed  Google Scholar 

  4. Blackkolb F, Schlegel HG (1968) Katabolische Repression und Enzymhemmung durch molekularen Wasserstoff beiHydrogenomonas. Arch Mikrobiol 62:129–143

    PubMed  Google Scholar 

  5. Bowien B, Schlegel HG (1972) Der Biosyntheseweg der RNS-Ribose inHydrogenomonas eutropha Stamm H16 undPseudomonas facilis. Arch Mikrobiol 85:95–112

    PubMed  Google Scholar 

  6. Bowien B, Windhövel U, Yoo J-G, Bednarski R, Kusian B (1990) Genetics of CO2 fixation in the chemoautotrophAlcaligenes eutrophus. FEMS Microbiol Rev 87:445–450

    Google Scholar 

  7. Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5:246–250

    Google Scholar 

  8. Clarke L, Carbon J (1976) A colony bank containing synthetic ColE1 hybrid plasmids representative of the entireE. coli genome. Cell 9:91–99

    PubMed  Google Scholar 

  9. Davis DH, Doudoroff M, Stanier RY, Mandel M (1969) Proposal to reject the genusHydrogenomonas: taxonomic implications. Int J Syst Bacteriol 19:375–390

    Google Scholar 

  10. Davis DH, Stanier RY, Doudoroff M, Mandel M (1970) Taxonomic studies on some gram negative polarly flagellated “hydrogen bacteria” and related species. Arch Mikrobiol 70:1–13

    PubMed  Google Scholar 

  11. Fraenkel D (1987) Glycolysis, pentose phosphate pathway, and Entner-Doudoroff pathway. In: Neidhardt FC (ed)Escherichia coli andSalmonella typhimurium—cellular and molecular biology, vol. 1. Washington, D.C.: American Society for Microbiology, pp 142–150

    Google Scholar 

  12. Ghangas GS, Wilson DB (1984) Isolation and characterization of theSalmonella typhimurium LT2 xylose regulon. J Bacteriol 157:158–164

    PubMed  Google Scholar 

  13. Gottschalk G, Eberhardt U, Schlegel HG (1964) Verwertung von Fructose durchHydrogenomonas H16 (I.). Arch Mikrobiol 48:95–108

    PubMed  Google Scholar 

  14. Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    PubMed  Google Scholar 

  15. Jeffries TW (1983) Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol 27:1–32

    PubMed  Google Scholar 

  16. Klintworth R, Husemann M, Weissenborn C, Bowien B (1988) Expression of the plasmid-encoded phosphoribulokinase gene fromAlcaligenes eutrophus. FEMS Microbiol Lett 49:1–6

    Google Scholar 

  17. Knauf CV, Nester EW (1982) Wide host range cloning vectors: a cosmid clone bank of anAgrobacterium Ti plasmid. Plasmid 8:45–54

    PubMed  Google Scholar 

  18. Kreuzer P, Gärtner D, Allmansberger R, Hillen W (1989) Identification and sequence analysis of theBacillus subtilis W23xylR gene andxyl operator. J Bacteriol 171:3840–3845

    PubMed  Google Scholar 

  19. Kunioka M, Kawaguchi Y, Doi Y (1989) Production of biodegradable copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate byAlcaligenes eutrophus. Appl Microbiol Biotechnol 30:569–573

    Google Scholar 

  20. Kusian B, Yoo J-G, Bednarski R, Bowien B (1992) The Calvin cycle enzyme pentose-5-phosphate 3-epimerase is encoded within thecfx operons of the chemoautotrophAlcaligenes eutrophus. J Bacteriol 174:7337–7344

    PubMed  Google Scholar 

  21. Lawlis VB, Dennis MS, Chen EY, Smith DH, Henner DJ (1984) Cloning and sequencing of the xylose isomerase and xylulose kinase genes ofEscherichia coli. Appl Environ Microbiol 47:15–21

    PubMed  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  23. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acids from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  24. Nandadasa HG, Andreesen M, Schlegel HG (1974) The utilization of 2-ketogluconate byHydrogenomonas eutropha H16. Arch Microbiol 99:15–23

    PubMed  Google Scholar 

  25. Posno M, Heuvelmans PTHM, van Giezen MJF, Lokman BC, Leer RJ, Powels PH (1991) Complementation of the inability ofLactobacillus strains to utilized-xylose withd-xylose catabolism-encoding genes ofLactobacillus pentosus. Appl Environ Microbiol 57:2764–2766

    PubMed  Google Scholar 

  26. Pries A, Steinbüchel A, Schlegel HG (1990) Lactose- and galactose-utilizing strains of poly(hydroxyalkanoic acid)-accumulatingAlcaligenes eutrophus andPseudomonas saccharophila obtained by recombinant DNA technology. Appl Microbiol Biotechnol 33:410–417

    Google Scholar 

  27. Rygus T, Hillen W (1992) Catabolite repression of thexyl operon inBacillus megaterium. J Bacteriol 174:3049–3055

    PubMed  Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis TE (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press

    Google Scholar 

  29. Schäferjohann J, Yoo J-G, Kusian B, Bowien B (1993) Thecbb operons of the facultative chemoautotrophAlcaligenes eutrophus encode phosphoglycolate phosphatase. J Bacteriol 175: 7329–7340

    PubMed  Google Scholar 

  30. Schlegel HG, Gottschalk G (1965) Verwertung von Glucose durch eine Mutante vonHydrogenomonas H16. Biochem Z 341:249–259

    PubMed  Google Scholar 

  31. Schlegel HG, Trüper HG (1966) Repression of enzyme formation inHydrogenomonas strain H16G+ by molecular hydrogen and by fructose. Antonie van Leeuwenhoek 32:277–292

    PubMed  Google Scholar 

  32. Schlegel HG, Gottschalk G, von Bartha R (1961) Formation and utilization of poly-β-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465

    PubMed  Google Scholar 

  33. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. BioTechnology 1:784–791

    Google Scholar 

  34. Sizemore C, Wieland B, Götz F, Hillen W (1992) Regulation ofStaphylococcus xylosus xylose utilization genes at the molecular level. J Bacteriol 174:3042–3048

    PubMed  Google Scholar 

  35. Spaink HP, Okker RJH, Wijffelman CA, Pees E, Lugtenberg BJJ (1987) Promoters in the nodulation region of theRhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9:27–39

    Google Scholar 

  36. Wilkie KCB (1979) The hemicelluloses of grasses and cereals. Adv Carbohydr Chem Biochem 36:215–264

    Google Scholar 

  37. Windhövel U, Bowien B (1991) Identification ofcfxR, an activator gene of autotrophic CO2 fixation inAlcaligenes eutrophus. Mol Microbiol 5:2695–2705

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchholz, B., Nordsiek, G., Meister, M. et al. Transfer of genes fromPseudomonas saccharophila to construct xylose-utilizing strains ofAlcaligenes eutrophus . Current Microbiology 29, 157–162 (1994). https://doi.org/10.1007/BF01570757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570757

Keywords

Navigation