Skip to main content
Log in

Xylose metabolism in a thermophilic mouldMalbranchea pulchella var.sulfurea TMD-8

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The thermophilic mouldMalbranchea pulchella var.sulfurea TMD-8 produced extracellular xylanases in wheat straw hemicellulose as well as wheat straw. This mould utilized xylose less efficiently than glucose. Mycelial extracts contained xylose isomerase, xylose reductase, and xylitol dehydrogenase. Xylose isomerase was less thermostable than that from other microorganisms. However, xylitol dehydrogenase and xylose reductase were relatively more thermostable in comparison with these enzymes from other microorganisms. The affinity of xylose isomerase for xylose was very high (Km 10mM), while that of xylose reductase was low (Km 23.5mM). The xylitol dehydrogenase exhibited relatively high affinity for xylitol (Km 0.02mM). The activity of this enzyme, however, declined steeply, in the alkaline range. This is the first report on the occurrence of three intracellular enzymes, xylose isomerase, xylose reductase, and xylitol dehydrogenase in a thermophilic mould, which play an important role in xylose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Anand L, Krishnamurthy S, Vithayathil PJ (1990) Purification and properties of xylanase from the thermophilic fungusHumicola lanuginosa (Griffon & Maublanc) Bunce. Arch Biochem Biophys 276:546–553

    PubMed  Google Scholar 

  2. Barnett JA (1968) Biochemical differentiation of taxa with special reference to the yeasts. In: Ainsworth GC, Sussman AS (eds) The fungi, vol. 3. New York: Academic Press, pp 557–595

    Google Scholar 

  3. Birken S, Pisano MA (1976) Purification and properties of a polyol dehydrogenase fromCephalosporium chrysogenum. J Bacteriol 125:225–232

    PubMed  Google Scholar 

  4. Chakravorty M, Vieger LA, Bacila M, Horecker BL (1962) Pentose metabolism inCandida. J Biol Chem 237:1014–1020

    PubMed  Google Scholar 

  5. Chen WP, Anderson AW (1980) Extraction of hemicellulose from ryegrass straw for the production of glucose isomerase and use of the resulting straw residue for feed. Biotechnol Bioeng 22:519–531

    Google Scholar 

  6. Chiang CL, Knight SG (1960) Metabolism ofD-xylose by moulds. Nature 188:79–81

    PubMed  Google Scholar 

  7. David J, Wiesmeyer H (1970) Regulation of ribose metabolism inEscherichia coli. I. The ribose catabolic pathway. Biochim Biophys Acta 208:45–50

    PubMed  Google Scholar 

  8. Dubey AK, Johri BN (1987) Xylanolytic activity of thermophilicSporotrichum sp. andMyceliophthora thermophilum. Proc Indian Acad Sci (Plant Sci) 97:247–255

    Google Scholar 

  9. Emerson R (1941) An experimental study of the life cycles and taxonomy ofAllomyces. Lloydia 4:77–144

    Google Scholar 

  10. Gomes J, Gomes I, Kreiner W, Esterbauer H, Sinner M, Steiner W (1993) Production of high level of cellulase-free and thermostable xylanase by a wild strain ofThermomyces lanuginosus using beechwood xylan. J Biotechnol 30:283–297

    Google Scholar 

  11. Hasija SK, Miller CE (1971) Nutrition ofChytriomyces and its influence on morphology. Am J Bot 59:939–944

    Google Scholar 

  12. Höfer M, Betz A, Kotyk A (1971) Metabolism of the obligatory yeastRhodotorula gracilis. IV. Induction of an enzyme necessary forD-xylose catabolism. Biochim Biophys Acta 252:1–12

    PubMed  Google Scholar 

  13. Horecker BL (1984) Monosaccharides and derivatives. In: Bergmeyer HV (ed) Methods of enzymatic analysis, vol. 6. Basel: Verlag Chemie, pp 465–473

    Google Scholar 

  14. Johri BN, Satyanarayana T (1986) Thermophilic moulds: perspectives in basic and applied research. Indian Rev Life Sci 6:75–100

    Google Scholar 

  15. Johri BN, Jain S, Chauhan S (1985) Enzymes from thermophilic fungi: proteases and lipases. Proc Indian Acad Sci (Plant Sci) 94:175–196

    Google Scholar 

  16. Kise S, Koizumi N, Maeda H (1988) Properties of NAD(P)H-linked aldose reductase fromCryptococcus lactativorus. J Ferment Technol 66:615–623

    Google Scholar 

  17. Kwon HJ, Kitada M, Horikoshi K (1987) Purification and properties ofD-xylose isomerase from alkalophilicBacillus No. KX-6. Agric Biol Chem 51:1983–1989

    Google Scholar 

  18. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  19. Maheshwari R, Kamalam PT (1985) Isolation and culture of a thermophilic fungusMelanocarpus albomyces and factors influencing the production and activity of xylanase. J Gen Microbiol 131:3017–3027

    Google Scholar 

  20. Matsuo M, Yasui T (1985) Properties of xylanase ofMalbranchea pulchella var.sulfurea no. 48. Agric Biol Chem 49:839–841

    Google Scholar 

  21. Reese ET (1946) Aerobic decomposition of cellulose by microorganisms at temperatures above 40°C. Ph.D. thesis, Pennsylvania State College, 100 pp

  22. Rizzi M, Harwart K, Thanh NAB, Dellweg H (1989) A kinetic study of the NAD+-xylitol dehydrogenase from the yeastPichia stipitis. J Ferment Bioeng 67:25–30

    Google Scholar 

  23. Satyanarayana T, Johri BN (1983) Variation in xylanolytic activity of thermophilic fungi. Bionature 3:39–41

    Google Scholar 

  24. Satyanarayana T, Jain S, Johri BN (1988) Cellulases and xylanases of thermophilic moulds. In: Agnihotri VP, Sarbhoy AK, Kumar D (eds) Perspectives in mycology and plant pathology. New Delhi: Malhotra Publishing House, pp 24–60

    Google Scholar 

  25. Satyanarayana T, Johri BN, Klein J (1992) Biotechnological potential of thermophilic fungi. In: Arora DK, Elander RP, Mukherji KG (eds) Handbook of applied mycology, vol. 4. New York: Marcel Dekker Inc, pp 729–761

    Google Scholar 

  26. Sharma HS, Johri BN (1992) The role of thermophilic fungi in agriculture. In: Arora DK, Elander RP, Mukherji KG (eds) Handbook of applied mycology, vol. 4. New York: Marcel Dekker Inc, pp 707–728

    Google Scholar 

  27. Singh A, Schügerl K (1992) Induction and regulation ofD-xylose catabolising enzymes inFusarium oxysporum. Biochem Int 28:481–488

    PubMed  Google Scholar 

  28. Smiley KL, Bolen PL (1982) Demonstration ofD-xylose reductase andD-xylitol dehydrogenase inPachysolen tannophilus. Biotechnol Lett 4:607–610

    Google Scholar 

  29. Suakane M, Tamura M, Tomimura C (1978) Physico-chemical and enzymatic properties of purified glucose isomerase fromStreptomyces olivochromogenes andBacillus stearothermophilus. Agric Biol Chem 42:909–917

    Google Scholar 

  30. Subrahmanyam A (1980) Studies onThermoascus aurantiacus Mehei. Acta Mycol 26:121–131

    Google Scholar 

  31. Suihko ML, Suomalainen I, Enari TM (1983)D-Xylose catabolism inFusarium oxysporum. Biotechnol Lett 5:525–530

    Google Scholar 

  32. Suzuki T, Onishi H (1975) Purification and properties of polyol: NADP oxidoreductase fromPichia quercuum. Agric Biol Chem 39:2389–2397

    Google Scholar 

  33. Verduyn C, Jzn JF, Dijken JP, Scheffers WA (1985) Multiple forms of xylose reductase inPachysolen tannophilus CBS 4044. FEMS Microbiol Lett 30:313–317

    Google Scholar 

  34. Wu JF, Lastick SM, Updegraff DM (1986) Ethanol production from sugars derived from plant biomass by a novel fungus. Nature 321:887–888

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Archana, A. & Satyanarayana, T. Xylose metabolism in a thermophilic mouldMalbranchea pulchella var.sulfurea TMD-8. Current Microbiology 29, 349–352 (1994). https://doi.org/10.1007/BF01570228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570228

Keywords

Navigation