Skip to main content
Log in

Purification and properties of ap-nitrobenzyl esterase fromBacillus subtilis

  • Published:
Journal of Industrial Microbiology

Abstract

A procedure for purifying to homogeneity a microbially produced biocatalyst useful for deblocking intermediates in the manufacture of beta-lactam antibiotics is reported. In aqueous solution the purifiedp-nitrobenzyl (PNB) carboxy-esterase was soluble, monomeric (molecular weight: 54 000 by SDS-PAGE or by gel filtration) and exhibited an acidic pl, 4.1. The PNB carboxy-esterase catalyzed rapid ester hydrolysis for simple organic esters such as PNB-acetate, benzyl acetate and α-naphthyl acetate and catalyzed deblocking (ester hydrolysis) of beta-lactam antibiotic PNB esters such as cephalexin-PNB and loracarbef-PNB. TheN-terminal amino acid sequence and the amino acid composition are reported. A serine residue is involved in ester hydrolysis: the PNB carboxy esterase was inhibited by phenylmethylsulfonyl fluoride and diethylp-nitrophenyl phosphate; one mole of diisopropyl fluorophosphate titration was required per mole of PNB carboxy-esterase for complete inhibition. When the [3H]-diisopropyl fluorophosphate-treated biocatalyst was digested with Lys C and the resulting peptides separated by HPLC, a single [3H]-labeled peptide was obtained; its amino acid sequence is reported. Inhibition of the PNB carboxy esterase by diethyl pyrocarbonate suggests that a histidinyl residue (or residues) is (are) also involved in the catalytic site of the esterase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

β-ME:

β-mercaptoethanol

Cf:

cefaclor

Cf:

nucleus-PNB

(6R, 7R):

7-amino-3-chloro-8-oxo-5-thia-1-azabicyclo[4.2.0]-oct-2-ene-2-carboxylic acid, (4-nitrophenyl)methyl ester

Cp:

cephalexin

Cp-PNB:

p-nitrobenzyl carboxy-ester of cephalexin

DEPC:

diethyl, pyrocarbonate

DFP:

diisopropyl fluorophosphate

DMSO:

dimethyl sulfoxide

DNP:

diethylp-nitrophenyl phosphate

EDTA:

ethylenediaminetetraacetic acid

EGTA:

ethylene, glycol-bis(aminoethyl ether)

N,N,N′N′ :

tetracetic acid

Lc:

loracarbef

Lc-PNB:

p-nitrobenzyl carboxy-ester of loracarbef

Lc:

nucleus-PNB

(6R, 7S):

7-amino-3-chloro-8-oxo-1-azabicyclo[4.2.0]-oct-2-ene-2-carboxylic acid, (4-nitrophenyl)methyl ester

Lys C:

an endoproteinase specifically cleaving at C terminal lysine residues

MWr :

relative molecular weight

PAGE:

polyacrylamide gel electrophoresis

PMSF:

phenylmethylsulfonylfluoride

PNB:

p-nitrobenzyl

PNBCE:

p-nitrobenzyl carboxy-esterase

SDS:

sodium dodecyl sulfate

References

  1. Applied Biosystems. 1985. Protein Sequencer User Bulletin No. 12. Foster City, CA 94404.

  2. Benohr, H.C., W. Franz and K. Krisch. 1966. Subcellular location and drug-induced changes of rat liver and kidney esterases. Arch. Pharmakol. Arch. Pharmakol. Exptl. Pathol. 255: 165–174.

    Google Scholar 

  3. Bidlingmeyer, B.A., S.A. Cohen and T.L. Tarvin. 1984. Rapid analysis of amino acid using pre-column derivatization. J. Chromatogr. 336: 93–104.

    PubMed  Google Scholar 

  4. Brannon, D.R., J.A. Mabe and D.S. Fukuda. 1976. De-esterification of cephalosporin para-nitrobenzyl esters by microbial enzyme. J. Antibiotics 29: 121–124.

    Google Scholar 

  5. Bunnell, C.A., W.D. Luke and F.M. Perry. 1986. Industrial manufacture of cephalosporins. In: Beta-Lactam Antibiotics for Clinical Use (Queener, S.F., J.A. Weber and S.W. Queener, eds), pp. 255–283. Marcel Dekker, New York.

    Google Scholar 

  6. Byrde, R.J.W. and A.H. Fielding. 1955. Studies on the acetylesterase ofSclerotinia laxa. Biochem J. 61: 337–342.

    PubMed  Google Scholar 

  7. Chauvette, R.R. and P.A. Pennington. 1974. Chemistry of cephalosporin antibiotics. 3-Halo and 3-methoxyl-3-cephems. J. Amer. Chem. Soc. 96: 4986–4987.

    Google Scholar 

  8. Chauvette, R.R. and P.A. Pennington. 1975. Chemistry of cephalosporin antibiotics. 30. 3-Methoxyl- and 3-halo-3-cephems. J. Med. Chem. 18: 403–408.

    PubMed  Google Scholar 

  9. Chen, K. and F.H. Arnold. 1991. Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic solvents. Bio/Technology 9: 1073–1077.

    PubMed  Google Scholar 

  10. Ellerton, N.V., W.F. Paradise and P.E. Sandford. 1973. Method of producing 7β-acylamido-3-methylceph-3-em-4-carboxylic acid esters. US Patent 3725399.

  11. Heinrikson, R.L. and S.C. Meredith. 1984. Amino acid analysis by reversed-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal. Biochem. 136: 65–74.

    PubMed  Google Scholar 

  12. Higerd, T.B. and J. Spizizen. 1973. Isolation of two acetyl esterases from extracts ofBacillus subtilis. J. Bacteriol. 124: 1184–1192.

    Google Scholar 

  13. Jenner, E.L. 1973. Calcium-deficient hydroxyapatite for use in column chromatography. US Patent 3 737 516.

  14. Koeppen, A.H., K.D. Barron and J. Bensohn. 1969. Redistribution of rat brain esterase during subcellular fractionation. Biochim. Biophys. Acta 183: 253–264.

    PubMed  Google Scholar 

  15. Krisch, K. 1966. Reaction of a microsomal esterase from hog-liver with diethyl-p-nitrobenzyl phosphate. Biochim. Biophys. Acta 122: 265–280.

    PubMed  Google Scholar 

  16. Krisch, K. 1971. Carboxylic ester hydrolases. In: The Enzymes, 3rd edn, vol. 5 (Boyer, P.D., ed.), pp. 43–69. Academic Press, New York.

    Google Scholar 

  17. Lammert, S.R., A.I. Ellis, R.R. Chauvette and S. Kukolija. 1978. Azetidinone antibiotics. A simple method for the removal ofp-nitrobenzyl acid protective group. J. Org. Chem. 43: 1243–1245.

    Google Scholar 

  18. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  Google Scholar 

  19. Margolis, F. and P. Feigelson. 1963. Purification and characterization of a genetically determined rabbit serum esterase. J. Biol. Chem. 238: 2620–2627.

    PubMed  Google Scholar 

  20. McDermid, K.P., C.W. Forsberg and R.C. Mckenzie. 1990. Purification and properties of an acetylxylan esterase fromFibrobacter succinogenes S85. Appl. Environ. Microbiol. 56: 3805–3810.

    PubMed  Google Scholar 

  21. Meghji, K., O.P. Ward and A. Araujo. 1990. Production, purification, and properties of extracellular carboxylic esterases fromBacillus subtilis NRRL 365. Appl. Environ. Microbiol. 56: 3735–3740.

    Google Scholar 

  22. Sobek, H. and H. Gorisch. 1988. Purification and characterization of a heat-stable esterase from the thermophilic archaebacteriumSulfolobus acidocaldarius. Biochem. J. 250: 453–458.

    PubMed  Google Scholar 

  23. Stephen, W.P. and I.H. Cheldelin. 1970. Characterization of soluble esterases from the thoracic muscle of the American cockroachPeriplaneta americana. Biochim. Biophys. Acta 201: 109–118.

    PubMed  Google Scholar 

  24. Weber, K. and M. Osborn. 1969. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244: 4406–4412.

    PubMed  Google Scholar 

  25. Zock, J., C. Cantwell, J. Swartling, R. Hodges, T. Pohl, K. Sutton, P. Roesteck Jr, D. McGilvrary and S. Queener. 1994. TheB. subtilis pnbA gene encoding pNB esterase: cloning, sequence and high level expression inE. coli. Gene 151: 37–43.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YR., Usui, S., Queener, S.W. et al. Purification and properties of ap-nitrobenzyl esterase fromBacillus subtilis . Journal of Industrial Microbiology 15, 10–18 (1995). https://doi.org/10.1007/BF01570007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570007

Keywords

Navigation