Advertisement

Journal of Industrial Microbiology

, Volume 16, Issue 1, pp 29–35 | Cite as

Internal substrate concentrations during biotransformation of octanoic acid into 2-heptanone by spores ofPenicillium roquefortii

  • C Larroche
  • I Besson
  • J -B Gros
Article

Abstract

Internal substrate concentrations were monitored during biotransformation of octanoic acid into 2-heptanone by spores ofPenicillium roquefortii. The fatty acid rapidly enters the spores in its undissociated form, and a Collander-type relation shows that it strongly accumulates in the spore wall and membrane; this accumulation is reversible. The reaction takes place with cytoplasmic substrate concentrations that quickly fall to zero, and the process is limited by octanoic acid penetration into the cells. This entry is accompanied by proton efflux and involves an active transport process with a H+-ATPase system that exhibits Michaelian behavior. The driving force is postulated to be ΔpH, which takes a value set by the initial substrate concentration through the stoichiometry of the H+/octanoic acid exchange.

Key words

spores fatty acid internal concentrations transport biotransformation Penicillium roquefortii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen KG, J McGee, ME Fellows, PA Tornheim and KR Wagner. 1984. A new procedure to analyze free fatty acids. Application to 20-mg brain tissue samples. J Chromatog 309: 33–42.Google Scholar
  2. 2.
    Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. 1968. Ann Rev Microbiol 22: 87–108.Google Scholar
  3. 3.
    Borst-Pauwels GWFH. 1981. Ion transport in yeasts. Biochim Biophys Acta 650:88–127.PubMedGoogle Scholar
  4. 4.
    Cheetham PSJ. 1993. The use of biotransformations for the production of flavours and fragrances. Trends Biotechnol 11: 478–488.Google Scholar
  5. 5.
    Chu IM, TA Keuer and ET Papoutsakis. 1987. Formate transport, growth inhibition and the membrane protonmotive force in two methylotrophs (T15 and L3). Appl Microbiol Biotechnol 26: 70–77.Google Scholar
  6. 6.
    Creuly C, JB Gros and C Larroche. 1990. Procédé microbiologique d'obtention de methylcétones. Eur Patent 0 390 624.Google Scholar
  7. 7.
    Creuly C, C Larroche and JB Gros. 1990. A fed-batch technique for 2-heptanone production by spores ofPenicillium roquefortii. Appl Microbiol Biotechnol 34: 20–25.Google Scholar
  8. 8.
    Driessen AJM and WN Konings. 1990. Energetic problems of bacterial fermentations: extrusion of metabolic end products. In. The Bacteria, vol 12 (Gunsalus IC, JR Sokatch and LN Ornston, eds), pp 449–478, Academic Press, New York.Google Scholar
  9. 9.
    Fan TY and JE Kinsella. 1976. Changes in biochemical components during the germination of spores ofPenicillium roquefortii. J Sci Food Agric 27: 745–752.PubMedGoogle Scholar
  10. 10.
    Gehrig RF and SG Knight. 1958. Formation of ketones from fatty acids by spores ofPenicillium roquefortii. Nature 182: 1237.Google Scholar
  11. 11.
    Jolly R and FV Kosikowski. 1975. A new blue cheese food material from ultra-filtrated skim milk and microbial enzyme-mold reacted fat. J Dairy Sci 58: 1272–1275.Google Scholar
  12. 12.
    Jolly R and FV Kosikowski. 1975. Blue cheese flavor by microbial lipases and mold spores utilizing whey powder, butter and coconut fats. J Food Sci 40: 285–287.Google Scholar
  13. 13.
    Ju LK and CS Ho. 1988. Correlation of cell volume fractions with cell concentrations in fermentation media. Biotechnol Bioeng 32: 95–99.Google Scholar
  14. 14.
    Kinsella JE and DH Hwang. 1976. Enzymes ofPenicillium roquefortii involved in the biosynthesis of cheese flavor. CRC Crit Rev Food Sci Nutr 8: 191–228.PubMedGoogle Scholar
  15. 15.
    Kohlwein SP and F Paltauf. 1983. Uptake of fatty acids by the yeasts,Saccharomyces uvarum andSaccharomycopsis lipolytica. Biochim Biophys Acta 792: 310–317.Google Scholar
  16. 16.
    Laane C, S Boeren, R Hilhorst and C Veeger. 1987. Optimisation of biocatalysis in organic media. Stud Org Chem 29: 65–89.Google Scholar
  17. 17.
    Larroche C, M Arpah and JB Gros. 1989. Methyl-ketone production by Ca-alginate/Eudragit RL entrapped spores ofPenicillium roquefortii. Enzyme Microb Technol 11: 106–112.Google Scholar
  18. 18.
    Larroche C, I Besson, CG Dussap, F Bourrust and JB Gors. 1993. Characterization of water distribution in cell pellets using nonlabeled sodium thiosulfate as interstitial space marker. Biotechnol Prog 9: 214–217.PubMedGoogle Scholar
  19. 19.
    Larroche C, I Besson and JB Gros. 1994. Behavior of spores ofPenicillium roquefortii during fed-batch bioconversion of octanoic acid into 2-heptanone. Biotechnol Bioeng 44: 699–709.Google Scholar
  20. 20.
    Larroche C and JB Gros. 1989. Batch and continuous 2-heptanone production by Ca-alginate/Eudragit RL entrapped spores ofPenicillium roquefortii. Biotechnol Bioeng 34: 30–38.Google Scholar
  21. 21.
    Larroche C and JB Gros. 1992. Characterization of the growth and sporulation behavior ofPenicillium roquefortii in solid substrate fermentation by material and bioenergetic balances. Biotechnol Bioeng 39: 815–827.Google Scholar
  22. 22.
    Larroche C, B Tallu and JB Gros. 1988. Aroma production by spores ofPenicillium roquefortii on a synthetic medium. J Ind Microbiol 3: 1–8.Google Scholar
  23. 23.
    Lawrence RC. 1966. The oxidation of fatty acids by spores ofPenicillium roquefortii. J Gen Microbiol 44: 393–405.PubMedGoogle Scholar
  24. 24.
    Metz B, EW de Bruijn and JC van Suijdam. 1981. Method for the quantitative representation of the morphology of molds. Biotechnol Bioeng 23: 149–162.Google Scholar
  25. 25.
    Michels PAM, JPJ Michels, J Boonstra and WN Konings. 1979. Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiol Lett 5: 357–364.Google Scholar
  26. 26.
    Moo-Young M, AR Moreira and RP Tengerdy. 1983. Principles of solid-substrate fermentation. In: The Filamentous Fungi, vol 4 (Smith JE, DR Berry and B Kristiansen, eds), pp 117–144, Edward Arnold, London.Google Scholar
  27. 27.
    Nelson JH. 1970. Production of blue cheese flavor via submerged fermentation byPenicillium roquefortii. J Agric Food Chem 18: 567–569.Google Scholar
  28. 28.
    Osborne SJ, J Leaver, MK Turner and P Dunnill. 1990. Correlation of biocatalytic activity in an organic-aqueous two-liquid phase system with solvent concentration in the cell membrane. Enzyme Microb Technol 12: 281–291.PubMedGoogle Scholar
  29. 29.
    Papoutsakis ET, CM Bussineau, IM Chu, AR Diwan and M Hesmemann. 1987. Transport of substrates and metabolites and their effect on cell metabolism (in butyric-acid and methylotrophic fermentations). Ann NY Acad Sci 506: 24–50.PubMedGoogle Scholar
  30. 30.
    Sakiadis BC. 1984. Fluid and particle mechanics. In: Perry's Chemical Engineers Handbook, 6th edn (Green DW and JO Maloney, eds), Section 5, pp 1–68, McGraw Hill Book Co, New York.Google Scholar
  31. 31.
    Sanders D, UP Hansen and CL Slayman. 1981. Role of the plasma membrane proton pump in pH regulation in non-animal cells. Proc Natl Acad Sci USA 78: 5903–5907.PubMedGoogle Scholar
  32. 32.
    Sanders D and CL Slayman. 1982. Control of intracellular pH-predominant role of oxidative metabolism, not proton transport, in the eukariotic microorganismNeurospora. J Gen Physiol 80: 377–402.PubMedGoogle Scholar
  33. 33.
    Schumpe A, G Quicker and WD Deckwer. 1982. Gas solubilities in microbial culture media. Adv Biochem Eng 24: 1–38.Google Scholar
  34. 34.
    Spector AA, D Steinberg and A Tanaka. 1965. Uptake of free fatty acids by Ehrlich ascites tumor cells.J Biol Chem 204: 1032–1041.Google Scholar
  35. 35.
    Stevens S and JH Servaas Hofmeyr. 1993. Effects of ethanol, octanoic and decanoic acids on fermentation and the passive influx of protons through the plasma membrane ofSaccharomyces cerevisiae. Appl Microbiol Biotechnol 38: 656–663.Google Scholar
  36. 36.
    Vezina C. 1987. Biotransformations. In: Basic Biotechnology (Bu'Lock J and B Kristiansen, eds), pp 463–482, Academic Press, New York.Google Scholar
  37. 37.
    Welsh FW, WD Murray and RE Williams. 1989. Microbiological and enzymatic production of flavor and fragrance chemicals. CRC Crit Rev Biotechnol 9: 105–169.Google Scholar

Copyright information

© Society for Industrial Microbiology 1996

Authors and Affiliations

  • C Larroche
    • 1
  • I Besson
    • 1
  • J -B Gros
    • 1
  1. 1.Laboratoire de Génie Chimique BiologiqueUniversité Blaise PascalAubière CedexFrance

Personalised recommendations