Skip to main content
Log in

Genetic analysis of adherence by oral streptococci

  • Published:
Journal of Industrial Microbiology

Abstract

Streptococci are one of the most successful bacterial colonizers of the human body and are major components of oral biofilms. The bacterial cells express multiple cell-surface adhesins that are responsible for the ability of streptococci to adhere to a wide range of substrates which include salivary and serous proteins, epithelial cells and other bacterial cells. Analysis of adherence-defective mutants has indicated the importance of high molecular mass wall-associated polypeptides and of enzymes catalyzing extracellular glucan polysaccharide synthesis to the adherence and accumulation of oral streptococci. The analysis of isogenic mutants of streptococci, generated through insertional inactivation (or allelic exchange), has confirmed the essential roles of specific surface polypeptides both to adhesive processes and to correct assembly of the cell wall layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alloing G, P de Philip and J-P Claverys. 1994. Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the gram-positiveStreptococcus pneumoniae. J Mol Biol 241: 44–58.

    PubMed  Google Scholar 

  2. Banas JA, RRB Russell and JJ Ferretti. 1990. Sequence analysis of the gene for the glucan-binding protein ofStreptococcus mutans Ingbritt. Infect Immun 58: 667–673.

    PubMed  Google Scholar 

  3. Busscher HJ, MM Cowan and HC van der Mei. 1992. On the relative importance of specific and non-specific approaches to oral microbial adhesion. FEMS Microbiol Rev 88: 199–210.

    Google Scholar 

  4. Camilli A, DA Portnoy and P Youngman. 1990. Insertional mutagenesis ofListeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. J Bacteriol 172: 3738–3744.

    PubMed  Google Scholar 

  5. Caparon MG, DS Stephens, A Olsén and JR Scott. 1991. Role of M protein in adherence of group A streptococci. Infect Immun 59: 1811–1817.

    PubMed  Google Scholar 

  6. Cleary P and D Retnoningrum. 1994. Group A streptococcal immunoglobulin-binding proteins: adhesins, molecular mimicry or sensory proteins? Trends Microbiol 2: 131–136.

    PubMed  Google Scholar 

  7. Clewell DB and SE Flannagan. 1993. The conjugative transposons of gram-positive bacteria. In: Bacterial Conjugation (Clewell DB, ed), pp 369–393, Plenum Press, New York.

    Google Scholar 

  8. Demuth DR, EE Golub and D Malamud. 1990. Streptococcal-host interactions. Structural and functional analysis of aStreptococcus sanguis receptor for a human salivary glycoprotein. J Biol Chem 265: 7120–7126.

    PubMed  Google Scholar 

  9. Doyle RJ, M Rosenberg and D Drake. 1990. Hydrophobicity of oral bacteria. In: Microbial Cell Surface Hydrophobicity (Doyle RJ and M Rosenberg, eds), pp 387–411, American Society for Microbiology, Washington, DC.

    Google Scholar 

  10. Elder BL and P Fives-Taylor. 1986. Characterization of monoclonal antibodies specific for adhesion: isolation of an adhesin ofStreptococcus sanguis FW213. Infect Immun 54: 421–427.

    PubMed  Google Scholar 

  11. Erickson HP. 1993. Gene knockouts of c-src, transforming growth factor β1, and tenacsin suggests superfluous, nonfunctional expression of proteins. J Cell Biol 120: 1079–1081.

    PubMed  Google Scholar 

  12. Erickson T and J Rundegren. 1983. Characterization of a salivary agglutinin reacting with a serotypec strain ofStreptococcus mutans. Eur J Biochem 133: 255–261.

    PubMed  Google Scholar 

  13. Fenno JC, A Shaikh and P Fives-Taylor. 1993. Characterization of allelic replacement inStreptococcus parasanguis: transformation and homologous recombination in a ‘nontransformable’ streptococcus. Gene 130: 81–90.

    PubMed  Google Scholar 

  14. Frandsen EVG, V Pedrazzoli and M Kilian. 1991. Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol 6: 129–133.

    PubMed  Google Scholar 

  15. Fives-Taylor PM and DW Thompson. 1985. Surface properties ofStreptococcus sanguis FW213 mutants nonadherent to saliva-coated hydroxyapatite. Infect Immun 47: 752–759.

    PubMed  Google Scholar 

  16. Gibbons RJ, I Etherden and Z Skobe. 1983. Association of fimbriae with the hydrophobicity ofStreptococcus sanguis FC-1 and adherence to salivary pellicles. Infect Immun 41: 414–417.

    PubMed  Google Scholar 

  17. Gibbons RJ, DI Hay and DH Schlesinger. 1991. Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion ofStreptococcus gordonii to apatitic surfaces. Infect Immun 59: 2948–2954.

    PubMed  Google Scholar 

  18. Hamada S and H Slade. 1980. Biology, immunology, and cariogenicity ofStreptococcus mutans. Microbiol Rev 44: 331–384.

    PubMed  Google Scholar 

  19. Hanada N and HK Kuramitsu. 1989. Isolation and characterization of theStreptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun 57: 2079–2085.

    PubMed  Google Scholar 

  20. Handley PS. 1990. Structure, composition and functions of surface structures on oral bacteria. Biofouling 2: 239–264.

    Google Scholar 

  21. Hanski E and M Caparon. 1992. Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcusStreptococcus pyogenes. Proc Natl Acad Sci USA 89: 6172–6176.

    PubMed  Google Scholar 

  22. Harrington DJ and RRB Russell. 1993. Multiple changes in cell wall antigens of isogenic mutants ofStreptococcus mutans. J Bacteriol 175: 5925–5933.

    PubMed  Google Scholar 

  23. Hasty DL, I Ofek, HS Courtney and RJ Doyle. 1992. Multiple adhesins of streptococci. Infect Immun 60: 2147–2152.

    PubMed  Google Scholar 

  24. Jenkinson HF. 1992. Adherence, coaggregation, and hydrophobicity ofStreptococcus gordonii associated with expression of cell surface lipoproteins. Infect Immun 60: 1225–1228.

    PubMed  Google Scholar 

  25. Jenkinson HF. 1994. Cell surface protein receptors in oral streptococci. FEMS Microbiol Lett 121: 133–140.

    PubMed  Google Scholar 

  26. Jenkinson HF and RA Easingwood. 1990. Insertional inactivation of the gene encoding a 76-kilodalton cell surface polypeptide inStreptococcus gordonii Challis has a pleiotropic effect on cell surface composition and properties. Infect Immun 58: 3689–3697.

    PubMed  Google Scholar 

  27. Jenkinson HF, SD Terry, R McNab and GW Tannock. 1993. Inactivation of the gene encoding surface protein SspA inStreptococcus gordonii DL1 affects cell interactions with human salivary agglutinin and oral actinomyces. Infect Immun 61: 3199–3208.

    PubMed  Google Scholar 

  28. Koga T, N Okahashi, I Takahashi, T Kanamoto, H Asakawa and M Iwaki. 1990. Surface hydrophobicity, adherence, and aggregation of cell surface protein antigen mutants ofStreptococcus mutans serotypec. Infect Immun 58: 289–296.

    PubMed  Google Scholar 

  29. Kolenbrander PE. 1982. Isolation and characterization of coaggregation-defective mutants ofActinomyces viscosus, Actinomyces naeslundii, andStreptococcus sanguis. Infect Immun 37: 1200–1208.

    PubMed  Google Scholar 

  30. Kolenbrander PE and RN Andersen. 1985. Use of coaggregation-defective mutants to study the relationship of cell-to-cell interactions and oral microbial ecology. In: Molecular Basis of Oral Microbial Adhesion (Mergenhagen SE and B Rosan, eds), pp 164–171. American Society for Microbiology, Washington, DC.

    Google Scholar 

  31. Kolenbrander PE and RN Andersen. 1990. Characterization ofStreptococcus gordonii (S. sanguis) PK488 adhesin-mediated coaggregation withActinomyces naeslundii PK606. Infect Immun 58: 3064–3072.

    PubMed  Google Scholar 

  32. Kolenbrander PE, RN Andersen and N Ganeshkumar. 1994. Nucleotide sequence of theStreptococcus gordonii PK488 coaggregation adhesin gene,scaA, and ATP-binding cassette. Infect Immun 62: 4469–4480.

    PubMed  Google Scholar 

  33. Kolenbrander PE, N Ganeshkumar, FJ Cassels and CV Hughes. 1993. Coaggregation: specific adherence among human oral plaque bacteria. FASEB J 7: 406–413.

    PubMed  Google Scholar 

  34. Kolenbrander PE and J London. 1993. Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175: 3247–3252.

    PubMed  Google Scholar 

  35. Kuramitsu HK. 1993. Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med 4: 159–176.

    PubMed  Google Scholar 

  36. LaPolla RJ, JA Haron, CG Kelly, WR Taylor, C Bohart, M Hendricks, J Pyati, RT Graff, JK-C Ma and T Lehner. 1991. Sequence and structural analysis of surface protein antigen I/II (SpaA) ofStreptococcus sobrinus. Infect Immun 59: 2677–2685.

    PubMed  Google Scholar 

  37. Lee SF, A Progulske-Fox, GW Erdos, DA Piacentini, GY Ayakawa, PJ Crowley and AS Bleiweis. 1989. Construction and characterization of isogenic mutants ofStreptococcus mutans deficient in major surface protein antigen P1 (I/II). Infect Immun 57: 3306–3313.

    PubMed  Google Scholar 

  38. McNab R and HF Jenkinson. 1992. Gene disruption identifies a 290 kDa cell-surface polypeptide conferring hydrophobicity and coaggregation properties inStreptococcus gordonii. Mol Microbiol 6: 2939–2949.

    PubMed  Google Scholar 

  39. McNab R, HF Jenkinson, DM Loach and GW Tannock. 1994. Cell-surface-associated polypeptides CshA and CshB of high moleculr mass are colonization determinants in the oral bacteriumStreptococcus gordonii. Mol Microbiol 14: 743–754.

    PubMed  Google Scholar 

  40. Morris JE, N Ganeshkumar and BC McBride. 1985. Cell surface components ofStreptococcus sanguis: relationship to aggregation, adherence, and hydrophobicity. J Bacteriol 164: 255–262.

    PubMed  Google Scholar 

  41. Morris JE and BC McBride. 1984. Adherence ofStreptococcus sanguis to saliva-coated hydroxyapatite: evidence for two binding sites. Infect Immun 43: 656–663.

    PubMed  Google Scholar 

  42. Munro C, SM Michalek and FL Macrina. 1991. Cariogenicity ofStreptococcus mutans V403 glucosyltransferase and frutosyltransferase mutants constructed by allelic exchange. Infect Immun 59: 2316–2323.

    PubMed  Google Scholar 

  43. Murray PA, A Prakobphol, T Lee, CI Hoover and SJ Fisher. 1992. Adherence of oral streptococci to salivary glycoproteins. Infect Immun 60: 31–38.

    PubMed  Google Scholar 

  44. Murchison H, S Larrimore and R Curtiss III. 1981. Isolation and characterization ofStreptococcus mutans mutants defective in adherence and aggregation. Infect Immun 34: 1044–1055.

    PubMed  Google Scholar 

  45. Nesbitt WE, RJ Doyle, KG Taylor, RH Staat and RR Arnold. 1982. Positive cooperativity in the binding ofStreptococcus sanguis to hydroxylapatite. Infect Immun 35: 157–165.

    PubMed  Google Scholar 

  46. Ofek I and RJ Doyle. 1994. Bacterial Adhesion to Cells and Tissues. Chapman & Hall, New York.

    Google Scholar 

  47. Qian H and ML Dao. 1993. Inactivation of theStreptococcus mutans wall-associated protein A gene (wapA) results in a decrease in sucrose-dependent adherence and aggregation. Infect Immun 61: 5021–5028.

    PubMed  Google Scholar 

  48. Retnoningrum DS and PP Cleary. 1994. M12 protein fromStreptococcus pyogenes is a receptor for immunoglobulin G3 and human albumin. Infect Immun 62: 2387–2394.

    PubMed  Google Scholar 

  49. Sela S, A Aviv, A Tovi, I Burnstein, MG Caparon and E Hanski. 1993. Protein F: an adhesin ofStreptococcus pyrogenes binds fibronectin via two distinct domains. Mol Microbiol 10: 1049–1055.

    PubMed  Google Scholar 

  50. Schroeder VA, SM Michalek and FL Macrina. 1989. Biochemical characterization and evaluation of virulence of a fructosyltransferase-deficient mutant ofStreptococcus mutans V403. Infect Immun 57: 3560–3569.

    PubMed  Google Scholar 

  51. Trevors JT, BM Chassy, WJ Dower and HP Blaschek. 1992. Electrotransformation of bacteria by plasmid DNA In: Guide to Electroporation and Electrofusion (Chang DC, BM Chassy, JA Saunders and AE Sowers, eds), pp 265–290, Academic Press, London.

    Google Scholar 

  52. van Houte J. 1982. Colonization mechanisms involved in the development of the oral flora. In: Host-Parasite interactions in Periodontal Diseases (Genco RJ and SE Mergenhagen, eds), pp 86–97, American Society for Microbiology, Washington, DC.

    Google Scholar 

  53. Wang J-R and MW Stinson. 1994. M protein mediates streptococcal adhesion to HEp-2 cells. Infect Immun 62: 442–448.

    PubMed  Google Scholar 

  54. Weerkamp AH, HC van der Mei and RSB Liem. 1986. Structural properties of fibrillar proteins isolated from the cell surface and cytoplasm ofStreptococcus salivarius (K+) cells and nonadhesive mutants. J Bacteriol 165: 756–752.

    PubMed  Google Scholar 

  55. Weerkamp AH, PS Handley, A Baars and JW Slot. 1986. Negative staining and immunoelectron microscopy of adhesion-deficient mutants ofStreptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril. J Bacteriol 165: 746–755.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkinson, H.F. Genetic analysis of adherence by oral streptococci. Journal of Industrial Microbiology 15, 186–192 (1995). https://doi.org/10.1007/BF01569824

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569824

Keywords

Navigation