Skip to main content

Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide

Abstract

Pseudomonas aeruginosa synthesizes an exopolysaccharide called alginate in response to environmental conditions. Alginate serves to protect the bacteria from adversity in its surroundings and also enhances adhesion to solid surfaces. Transcription of the alginate biosynthetic genes is induced upon attachment to the substratum and this leads to increased alginate production. As a result, biofilms develop which are advantageous to the survival and growth of the bacteria. In certain circimstances,P. aeruginosa produces an alginate lyase enzyme which cleaves the polymer into short oligosaccharides. This negates the anchoring properties of the alginate and results in increased detachment of the bacteria away from the surface, allowing them to spread and colonize new sites. Thus, both alginate biosynthetic and degradative enzymes are important for the development, maintenance and spread ofP. aeruginosa biofilms.

This is a preview of subscription content, access via your institution.

References

  1. Allison DG. 1993. Biofilm associated exopolysaccharides. Microbiol Eur 1: 16–19.

    Google Scholar 

  2. Allison DG, MRW Brown, DE Evans and P Gilbert. 1990. Surface hydrophobicity and dispersal ofPseudomonas aeruginosa from biofilms. FEMS Microbiol Lett 71: 101–104.

    Google Scholar 

  3. Allison DG, MRW Brown and P Gilbert. 1991. Slow adherent growth modulates polysaccharide production byPseudomonas aeruginosa. Biofouling 4: 243.

    Google Scholar 

  4. Allison DG, DJ Evans, MRW Brown and P Gilbert. 1990. Possible involvement of the division cycle in dispersal ofEscherichia coli from biofilms. J Bacteriol 172: 1667–1669.

    PubMed  Google Scholar 

  5. Allison DG and IW Sutherland. 1984. A staining technique for attached bacteria and its correlation to extracellular carbohydrate production. J Microbiol Meth 2: 93–99.

    Google Scholar 

  6. Allison DG and IW Sutherland. 1987. The role of expolysaccharides in adhesion of freshwater bacteria. J Gen Microbiol 133: 1319–1327.

    Google Scholar 

  7. Anwar H, JL Strap and JW Costerton. 1992. Susceptibility of biofilm cells ofPseudomonas aeruginosa to bactericidal actions of whole blood and serum. FEMS Microbiol Lett 92: 235–242.

    Google Scholar 

  8. Bayer AS, S Park, MC Ramos, CC Nast, F Eftekhar and NL Schiller. 1992. Effects of alginase on the natural history and antibiotic therapy of experimental endocarditis caused by mucoidPseudomonas aeruginosa. Infect Immun 60: 3979–3985.

    PubMed  Google Scholar 

  9. Bayer AS, DP Speert, S Park, J Tu, M Witt, CC Nast and DC Norman. 1991. Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing ofPseudomonas aeruginosa. Infect Immun 59: 302–308.

    PubMed  Google Scholar 

  10. Berry A, JD DeVault and AM Chakrabarty. 1989. High osmolarity is a signal for enhancedalgD transcription in mucoid and nonmucoidPseudomonas aeruginosa strains. J Bacteriol 171: 2312–2317

    PubMed  Google Scholar 

  11. Boyd A, M Ghosh, D Shinabarger, R Keogh and AM Chakrabarty. 1993. Sequence of thealgL gene ofPseudomonas aeruginosa and purification of its alginate lyase product. Gene 131: 1–8.

    PubMed  Google Scholar 

  12. Boyd A and AM Chakrabarty. 1994. Role of the alginate lyase in cell detachment ofPseudomonas aeruginosa. Appl Environ Microbiol 60: 2355–2359.

    PubMed  Google Scholar 

  13. Bright JJ and M Fletcher. 1983. Amino-acid assimilation and electron transport system activity in attached and free-living bacteria. Appl Environ Microbiol 43: 1166–1172.

    Google Scholar 

  14. Brown MRW and P Gilbert. 1993. Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol Symp Supp 74: 87S-97S.

    Google Scholar 

  15. Bryers JD. 1988. Modeling biofilm accumulation. In: Physiological Models in Microbiology, Vol 2 (Bazin MJ and JI Prosser, eds), pp 109–144, CRC, Boca Raton, FL.

    Google Scholar 

  16. Characklis WG and KC Marshall. 1990. Biofilms. John Wiley and Sons, NY.

    Google Scholar 

  17. Chitnis CE and DE Ohman. 1993. Genetic analysis of the alginate biosynthetic gene cluster ofPseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol 8: 583–590.

    PubMed  Google Scholar 

  18. Coplin DL and D Cook. 1990. Molecular genetics of extracellular polysaccharide biosynthesis in vascular phytopathogenic bacteria. Mol Plant-Microbe Interact 3: 271–279.

    PubMed  Google Scholar 

  19. Costerton JW, K-J Cheng, GG Geesey, TI Ladd, JC Nickel, M Dasgupta and TJ Marrie. 1987. Bacterial biofilms in nature and disease. Annu Rev Microbiol 41: 435–464.

    PubMed  Google Scholar 

  20. Dagostino L, AE Goodman and KC Marshall. 1991. Physiological responses induced in bacteria adhering to surfaces. Biofouling 4: 113–119.

    Google Scholar 

  21. Davidson IW, IW Sutherland and CJ Lawson. 1977. Localization ofO-acetyl groups in bacterial alginate. J Gen Microbiol 98: 1181–1186.

    Google Scholar 

  22. Davies DG, AM Chakrabarty and GG Geesey. 1993. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression byPseudomonas aeruginosa. Appl Environ Microbiol 59: 1181–1186.

    PubMed  Google Scholar 

  23. Davies DG and GG Geesey. 1995. Regulation of the alginate biosynthetic genealgC inPseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61: 860–867.

    PubMed  Google Scholar 

  24. Deretic V, R Dikshit, WM Konyescni, AM Chakrabarty and TK Misra. 1989. ThealgR gene which regulates mucoidy inPseudomonas aeruginosa belongs to a class of environmentally responsive genes. J Bacteriol 171: 1278–1283.

    PubMed  Google Scholar 

  25. Deretic V, MJ Schurr, JC Boucher and DW Martin. 1994. Conversion ofPseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress regulation of bacterial virulence by alternative sigma factors. J Bacteriol 176: 2773–2780.

    PubMed  Google Scholar 

  26. DeVault JD, A Berry, TK Misra, A Darzins and AM Chakrabarty. 1989. Environmental sensory signals and microbial pathogenesis:Pseudomonas aeruginosa infection in cystic fibrosis. Bio/Technol 7: 352–357.

    Google Scholar 

  27. DeVault JD, K Kimbara and AM Chakrabarty. 1990. Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy inPseudomonas aeruginosa. Mol Microbiol 4: 737–745.

    PubMed  Google Scholar 

  28. DeVries CA and DE Ohman. 1994. Mucoid-to-nonmucoid conversion in alginate-producingPseudomonas aeruginosa results from spontaneous mutations inalgT, encoding a putative alternate sigma factor and shows evidence for autoregulation. J Bacteriol 176: 6677–6687.

    PubMed  Google Scholar 

  29. Doig P, NR Smith, T Todd and RT Irvin. 1987. Characterization of the binding ofPseudomonas aeruginosa alginate to human epithelial cells. Infect Immun 55: 1517–1522.

    PubMed  Google Scholar 

  30. Evans DJ, DG Allison, MRW Brown and P Gilbert. 1991. Susceptibility ofPseudomonas aeruginosa andEscherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother 27: 177–184.

    PubMed  Google Scholar 

  31. Evans LR and A Linker. 1973. Production and characterization of the slime exopolysaccharide ofPseudomonas aeruginosa. J Bacteriol 116: 915–924.

    PubMed  Google Scholar 

  32. Fett WF, SF Osman, MC Fishman and TS Siebles III. 1986. Alginate production by plant-pathogenic Pseudomonads. Appl Environ Microbiol 52: 466–473.

    Google Scholar 

  33. Fett WF, JM Wells, P Cescutti and C Wijey. 1995. Identification of exopolysaccharides produced by fluorescent Pseudomonads associated with commercial mushroom (agaricus bisporus) production. Appl Environ Microbiol 61: 513–517.

    PubMed  Google Scholar 

  34. Franklin MJ, CE Chitnis, P Gacesa, A Sonesson, DC White and DE Ohman. 1994.Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J Bacteriol 176: 1821–1830.

    PubMed  Google Scholar 

  35. Franklin MJ and DE Ohman. 1993. Identification ofalgF in the alginate biosynthetic gene cluster ofPseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175: 5057–5065.

    PubMed  Google Scholar 

  36. Fujiwara S and AM Chakrabarty. 1994 Post-transcriptional regulation of thePseudomonas aeruginosa algC gene. Gene 146: 1–5.

    PubMed  Google Scholar 

  37. Gilbert P, DJ Evans and MRW Brown. 1993. Formation and dispersal of bacterial biofilmsin vivo andin situ. J Appl Bacteriol Symp Supp 74: 67S-78S.

    Google Scholar 

  38. Goldberg J, K Hatano and GB Pier. 1993. Synthesis of lipopolysaccharide O side chains byPseudomonas aeruginosa PAO1 requires the enzyme phosphomannomutase. J Bacteriol 175: 1605–1611.

    PubMed  Google Scholar 

  39. Govan JRW and JAM Fyfe. 1978. MucoidPseudomonas aeruginosa and cystic fibrosis: resistance of mucoid form to carbencillin, flucloxacillin and tobramycin and the isolation of mucoid variantsin vitro. J Antimicrob Chemother 4: 233–240.

    PubMed  Google Scholar 

  40. Govan JR, JAM Fyfe and TR Jarman. 1981. Isolation of alginate-producing mutants ofPseudomonas fluorescens, Pseudomonas putida, andPseudomonas mendocina. J Gen Microbiol 125: 217–220.

    PubMed  Google Scholar 

  41. Hoyle BD and JW Costerton. 1990. Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37: 91–105.

    Google Scholar 

  42. Hoyle BD, LJ Williams and JW Costerton. 1993. Production of mucoid exopolysaccharide during development ofPseudomonas aeruginosa biofilms. Infect Immun 61: 777–780.

    PubMed  Google Scholar 

  43. Jensen ET, A Kharazami, K Lam, JW Costerton and N Høiby. 1990. Human polymorphonuclear leukocyte response toPseudomonas aeruginosa grown in biofilms. Infect Immun 58: 2383–2385.

    PubMed  Google Scholar 

  44. Kato J, TK Misra and AM Chakrabarty. 1990. AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis inPseudomonas aeruginosa. Proc Natl Acad Sci USA 87: 2887–2891.

    PubMed  Google Scholar 

  45. Kinniment SL and JWT Wimpenny. 1992. Measurements of the distribution of the adenylate concentrations and adenylate energy charge acrossPseudomonas aeruginosa biofilms. Appl Environ Microbiol 58: 1629–1635.

    PubMed  Google Scholar 

  46. Kjelleberg S, BA Humphrey and KC Marshall. 1983. Initial phases of starvation and activity of bacteria at surfaces. Appl Environ Microbiol 46: 978–984.

    Google Scholar 

  47. Korber DR, GA James and JW Costerton. 1994. Evaluation of fleroxacin activity against establishedPseudomonas fluorescens biofilms. Appl Environ Microbiol 60: 1663–1669.

    Google Scholar 

  48. Lam J, R Chan, K Lam and JW Costerton. 1980. Production of mucoid microcolonies byPseudomonas aeruginosa within infected lungs in CF patients. Infect Immun 28: 546–556.

    PubMed  Google Scholar 

  49. Linton JD. 1990. Physiology of exopolysaccharide production. In: Novel Biodegradable Microbial Polymers (Dawes EA, ed), pp 311–330. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  50. van Loosdrecht MCM, J Lyklema, W Norde and AJB Zehnder. 1990. Influence of interfaces on microbial activity. Microbiol Rev 54: 75–87.

    PubMed  Google Scholar 

  51. Maharaj R, TB May, S-K Wang and AM Chakrabarty. 1993. Sequence of thealg8 andalg44 genes involved in the synthesis of alginate byPseudomonas aeruginosa. Gene 136: 267–269.

    PubMed  Google Scholar 

  52. Mai GT, JG McCormack, WK Seow, GB Pier, LA Jackson and YH Thong. 1993. Inhibition of adherence of mucoidPseudomonas aeruginosa by alginase, specific monoclonal antibodies, and antibiotics. Infect Immun 47: 723–729.

    Google Scholar 

  53. Marcus H and NR Baker. 1985. Quantitation of adherence of mucoid and nonmucoidPseudomonas aeruginosa to hamster epithelium. Infect Immun 47: 723–729.

    PubMed  Google Scholar 

  54. Marshall KC. 1992. Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM News 58: 202–207.

    Google Scholar 

  55. McPherson MA and MC Goodchild. 1988. The biochemical defect in cystic fibrosis. Clinical Sci 74: 337–345.

    Google Scholar 

  56. Melo LF, TR Bott, M Fletcher and B Capdeville. 1992. Biofilms—Science and Technology. Kluwer Academic Publishers. Dordrecht, Netherlands.

    Google Scholar 

  57. Nelson SM, P Gilbert, AE Hodgson and MRW Brown. 1994. Influence of biofilm mode of growth on cell surface biochemistry and hydrophobicity of iron-limitedPseudomonas aeruginosa. Abstr Annu Meet Soc Microbiol, p 121.

  58. Nikaido H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264: 382–388.

    PubMed  Google Scholar 

  59. Nivens DE, MJ Franklin, DC White and DE Ohman. 1994. Effect of alginate and acetylation of alginate on the formation of biofilms byPseudomonas aeruginosa. Abstr Annu Meet Soc Microbiol, p 121.

  60. Ophir T and DL Gutnick. 1994. A role of exopolysaccharide in the protection of microorganisms from desiccation. Appl Environ Microbiol 60: 740–745.

    Google Scholar 

  61. Passador L, JM Cook, MJ Gamello, L Rust and BH Iglewski. 1993. Expression ofPseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260: 1127–1130.

    PubMed  Google Scholar 

  62. Peyton BM and WG Characklis. 1993. A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment. Biotechnol Bioeng 41: 728–735.

    Google Scholar 

  63. Ramphal R and GB Pier. 1985. Role ofPseudomonas aeruginosa mucoid exopolysaccharide in adherence to tracheal cells. Infect Immun 47: 1–4.

    PubMed  Google Scholar 

  64. Rehm BHA, G Boheim, J Tomassen and UK Winkler. 1994. Overexpression ofalgE inEscherichia coli: subcellular localization, purification and ion channel properties. J Bacteriol 176: 5637–5647.

    Google Scholar 

  65. Roberson EB and MK Firestone. 1992. Relationship between desiccation and exopolysaccharide production in a soilPseudomonas species. Appl Environ Microbiol 58: 1284–1291.

    Google Scholar 

  66. Rosenberg E, N Kaplan, O Pines, M Rosenberg and D Gutnick. 1983. Capsular polysaccharides interfere with adhesion ofAcinetobacter calcoaceticus to hydrocarbon. FEMS Microbiol Lett 17: 157–160.

    Google Scholar 

  67. Roychoudhury S, TB May, JF Gill, SK Singh, DS Feingold and AM Chakrabarty. 1989. Purification and characterization of guanosine diphospho-d-mannose dehydrogenase. J Biol Chem 264: 9380–9385.

    PubMed  Google Scholar 

  68. Schiller NL, SR Monday, CM Boyd, NT Keen and DE Ohman. 1993. Characterization of thePseudomonas aeruginosa alginate lyase gene (algL): cloning, sequencing and expression inEscherichia coli. J Bacteriol 175: 4780–4789.

    PubMed  Google Scholar 

  69. Schlictman D, A Kavanaugh-Black, S Shankar and AM Chakrabarty. 1994. Energy metabolism and alginate biosynthesis inPseudomonas aeruginosa: role of the tricarboxylic acid cycle. J Bacteriol 176: 6023–6029.

    PubMed  Google Scholar 

  70. Schlichtman D, M Kubo, S Shankar and AM Chakrabarty. 1995. Regulation of nucleoside diphosphate kinase and secretable virulence factors inPseudomonas aeruginosa: roles ofalgR2 andalgH. J Bacteriol 177: 2469–2474.

    PubMed  Google Scholar 

  71. Schurr MJ, DW Martin, MH Mudd and V Deretic. 1994. Gene cluster controlling conversion to alginate-overproducing phenotype inPseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy. J Bacteriol 176: 3375–3382.

    PubMed  Google Scholar 

  72. Shankar S, RW Ye, D Schlictman and AM Chakrabarty. 1995. Exopolysaccharide alginate synthesis inPseudomonas aeruginosa: enzymology and regulation of gene expression. Adv Enzymol: (in press).

  73. Shinabarger D, A Berry, TB May, R Rothmel, A Fialho and AM Chakrabarty. 1991. Purification and characterization of phosphomannose isomerase-guanosine diphospho-p-mannose pyrophosphorylase. J Biol Chem 266: 2080–2088.

    PubMed  Google Scholar 

  74. Shinabarger D, TB May, A Boyd, M Ghosh and AM Chakrabarty. 1993. Nucleotide sequence and expression of thePseudomonas aeruginosa algF gene controlling acetylation of alginate. Mol Microbiol 9: 1027–1035.

    PubMed  Google Scholar 

  75. Shortridge VD, ML Pato, AI Vasil and ML Vasil. 1991. Physical mapping of virulence-associated genes inPseudomonas aeruginosa by transverse alternating electrophoresis. Infect Immun 59: 3596–3603.

    PubMed  Google Scholar 

  76. Stewart PS. 1993. A model of biofilm detachment. Biotechnol Bioeng 41: 111–117.

    Google Scholar 

  77. Terry JM, SE Piña and SJ Mattingly. 1991. Environmental conditions which influence mucoid conversion inPseudomonas aeruginosa PAO1. Infect Immun 59: 471–477.

    PubMed  Google Scholar 

  78. Vandevivere P and DL Kirchman. 1993. Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59: 3280–3286.

    Google Scholar 

  79. Wozniak DJ and DE Ohman. 1991.Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required foralgD transcription. J Bacteriol 173: 1406–1413.

    PubMed  Google Scholar 

  80. Wrangstadh M, U Szewyzk, J Östling and S Kjelleberg. 1990. Starvation spectific formation of a peripheral exopolysaccharide by a marinePseudomonas species, strain S9. Appl Environ Microbiol 56: 2065–2072.

    PubMed  Google Scholar 

  81. Xun L, RA Mah and DR Boone. 1990. Isolation and characterization of disaggregatase fromMethanosarcina mazei LYC. Appl Environ Microbiol 56: 3693–3698.

    PubMed  Google Scholar 

  82. Zielinski NA, AM Chakrabarty and A Berry. 1991. Characterization and regulation of thePseudomonas aeruginosa algC gene encoding phosphomannomutase. J Biol Chem 266: 9754–9763.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boyd, A., Chakrabarty, A.M. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. Journal of Industrial Microbiology 15, 162–168 (1995). https://doi.org/10.1007/BF01569821

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569821

Keywords

  • biofilm anchoring
  • alginate gene activation
  • biofilm detachment
  • alginate lyase