Skip to main content
Log in

Trends in the search for bioactive microbial metabolites

  • Thom Award Lecture
  • Published:
Journal of Industrial Microbiology

Summary

Bioactive microbial metabolites are attracting increasing attention as useful agents for medicine, veterinary medicine, agriculture, and as unique biochemical tools. A review of the current trends in the discovery-of new metabolites shows that the number of active compounds with non-antibiotic type of activity has increased, resulting in an expansion of the variety of bioactivity of microbial metabolites. Factors that contribute to the increased rate of discovery include: development of new methods for activity measurement, exploitation of novel groups of microorganisms as sources of active compounds, new directions for chemical modification, and incorporation of newer knowledge of biotechnology into screening systems. To exemplify this, typical screening methods, and chemical and biological properties of several bioactive compounds obtained by these methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldridge, D.C., D. Gil and W.B. Turner. 1971. Antibiotic 1233a: a fungal β-lactone. J. Chem. Soc. (C): 3888–3891.

  2. Baldwin, J.E., R.M. Adlington, A. Basak, S.L. Flitsch, S. Petursson, N.J. Turner and H.-H. Ting. 1986. Enzymatic synthesis of a new type of penicillin. J. Chem. Soc., Chem. Commun. 1986: 975–976.

    Google Scholar 

  3. Barde, Y.-A. 1989. Trophic factors and neuronal survival. Neuron 2: 1525–1534.

    PubMed  Google Scholar 

  4. Bartnicki-Garcia, S. and M.C. Wang. 1983. Biochemical aspects of morphogenesis inPhytophthora. In: Phytophthora: Its Biology, Taxonomy, Ecology, and Pathology (Erwin, D.C. et al., eds.), pp. 121–137, American Phytopathology Society, MN.

    Google Scholar 

  5. Boeck, L.D., D.S. Fukuda, B.J. Abbott and M. Debono. 1989. Deacylation of echinocandin B byActinoplanes utahensis. J. Antibiot. 42: 382–388.

    PubMed  Google Scholar 

  6. Brown, J.C., M.A. Cook and J.R. Dryburgh. 1973. Motilin, a gastric motor activity stimulating polypeptide: The complete amino acid sequence. Can. J. Biochem. 51: 533–537.

    PubMed  Google Scholar 

  7. Buchholz, R.A., R.L. Duvdore, W.R. Cumiskey, A.L. Harris and R.J. Silver. 1991. Protein kinase inhibitors and blood pressure control in spontaneously hypertensive rats. Hypertension 17: 91–100.

    PubMed  Google Scholar 

  8. Burg, R.W., B.M. Miller, E.E. Baker, J. Birnbaum, S.A. Currie, R. Hartman, Y. Kong, R.L Monaghan, G. Olson, I. Putter, J.B. Tunac, H. Wallick, E.O. Stapley, R. Oiwa and S. Ōmura. 1979. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15: 361–367.

    PubMed  Google Scholar 

  9. Debono, M., B.J. Abbott, D.S. Fukuda, M. Barnhart, K.E. Willard, R.M. Molloy, K.H. Michel, J.R. Turner, T.F. Butler and A.H. Hunt. 1989. Synteesis of new analogs of echinocandin B by enzymatic deacylation and chemical reacylation of the echinocandin B peptide: synthesis of the antifungal agent cilofungin (LY 121019). J. Antibiot. 42: 389–397.

    PubMed  Google Scholar 

  10. Delay-Goyet, P. and J.M. Lundberg. 1991. Dactinomycin is a competitive neurokinin-2 receptor antagonist. Biochem. Biophys. Res. Commun. 180: 1342–1349.

    PubMed  Google Scholar 

  11. Chen, S.T., O.D. Hensens and M.D. Schulman. 1989. Chapter 4. Biosynthesis. In: Ivermectin and Abamectin (Campbell W.C., ed.), pp. 55–72, Springer-Verlag, New York.

    Google Scholar 

  12. Cole, S.P., B.A.M. Rudd, D.A. Hopwood, C.-J. Chang and H.G. Floss. 1987. Biosynthesis of the antibiotic actinorhodin: analysis of blocked mutants ofStreptomyces coelicolor. J. Antibiot. 40: 340–347.

    PubMed  Google Scholar 

  13. Delmer, D.P. 1983. Biosynthesis of cellulose. In: Adv. Carbohydrate Chemistry and Biochemistry Vol.41 (Tipson, R.S. and D. Horton, eds.), pp. 105–153, Academic Press, New York.

    Google Scholar 

  14. Depoortere, I., T.L. Peeters and G. Vantrappen. 1990. The erythromycin derivative EM-523 is a potent motilin agonist in man and in rabbit. Peptides 11: 515–519.

    PubMed  Google Scholar 

  15. Erkel, G. and T. Anke. 1992. Antibiotics from basidiomycetes 41. Clavicoronic acid, a novel inhibitor of reverse transcriptase fromClavicorona pyxidata. J. Antibiot. 45: 29–37.

    PubMed  Google Scholar 

  16. Fisher, M.H. and H. Mrozik. 1984. The avermectin family of macrolide-like antibiotics. In: Macrolide Antibiotics. Chemistry, Biology and Practice (Ōmura, S., ed.), pp. 553–606, Academic Press, Orlando.

    Google Scholar 

  17. Fujimoto, M., S. Shinagawa, M. Wakimasu, C. Kitada and H. Yajima. 1978. Synthesis of porcine motilin and itsd-Pheanalog by the use of methanesulfonic acid. Chem. Pharm. Bull. 26: 101–107.

    Google Scholar 

  18. Funayama S., Y. Anraku, A. Mita, K. Komiyama and S. Ōmura. 1989. Structural study of isoflavonoids possessing antioxidant activity isolated from the fermentation broth ofStreptomyces sp. J. Antibiot. 42: 1350–1355.

    PubMed  Google Scholar 

  19. Funayama, S., M. Ishibashi, Y. Anraku, M. Miyauchi, H. Mori, K. Komiyama and S. Ōmura. 1989. Novel cytocidal antibiotics, glucopiericidinols A1 and A2. Taxonomy, fermentation, isolation, structure elucidation and biological characteristics. J. Antibiot. 42: 1734–1740.

    PubMed  Google Scholar 

  20. Funayama, S., M. Ishibashi, K. Komiyama and S. Ōmura. 1991. A new antibiotic, okicenone. II. Physico-chemical properties and structure elucidation. J. Antibiot. 44: 819–823.

    PubMed  Google Scholar 

  21. Funayama, S., M. Ishibashi, K. Komiyama and S. Ōmura. 1990. Biosynthesis of furaquinocins A and B. J. Org. Chem. 55: 1132–1133.

    Google Scholar 

  22. Greene, B.M. and H.R. Taylor. 1989. Use of ivermectin in humans. In: Ivermectin and Abamectin (Campbell, W.C., ed.), pp. 311–323, Springer-Verlag, New York.

    Google Scholar 

  23. Haigler, C.H., R.M. Brown Jr. and M. Benziman. 1980. Calcofluor White ST alters the in vivo assembly of cellulose microfibrils. Science 210: 903–906.

    PubMed  Google Scholar 

  24. Hardie, D.G., T.A.J. Haystead and A.T.R. Sim. 1991. Use of okadaic acid to inhibit protein phosphatase in intact cells. In: Methods in Enzymology Vol. 201. Protein phosphorylation Part B (Hunter, T. and B.M. Sefton, eds.), pp. 469–476, Academic Press, San Diego.

    Google Scholar 

  25. Hartman, E.J., S. Ōmura and M. Laposata. 1989. Triacsin C, a differential inhibitor of arachidonyl-CoA synthetase and nonspecific long chain acyl-CoA synthetase. Prostaglandins 37: 655–671.

    PubMed  Google Scholar 

  26. Hayakawa, M., T. Kajiura and H. Nonomura. 1991. New methods for the highly selective isolation ofStreptosporangium andDactylosporangium from soil. J. Ferment. Bioeng. 72: 327–333.

    Google Scholar 

  27. Hefti, F.L. and W.J. Weiner. 1986. Nerve growth factors and Alzheimer's disease. Ann. Neurol. 20: 275–281.

    PubMed  Google Scholar 

  28. Heim, D.R., J.R. Skomp, E.E. Tschabold and I.M. Larrinua. 1990. Isoxaben inhibits the synthesis of acid insoluble cell wall materials inArabidops thaliana. Plant Physiol. 93: 695–700.

    Google Scholar 

  29. Hopwood, D.A. 1990. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu. Rev. Genet. 24: 37–66.

    PubMed  Google Scholar 

  30. Hopwood, D.A., F. Malpartida, H.M. Kieser, H. Ikeda, J. Duncan, I. Fujii, B.A.M. Rudd, H.G. Floss and S. Ōmura. 1985. Production of hybrid antibiotics by genetic engineering. Nature (Lond.) 312: 642–644.

    Google Scholar 

  31. Horinouchi, S., F. Malpartida, D.A. Hopwood and T. Beppu. 1989.afs B stimulates transcription of the actinorhodin biosynthesis pathway inStreptomyces coelicolor A3(2) andStreptomyces lividans. Mol. Gen. Genet. 215: 355–357.

    PubMed  Google Scholar 

  32. Horinouchi, S., K. Miyake, S.-K. Hong, D. Vujaklija, K. Ueda and T. Beppu. 1991. Regulation by A-factor andafs R of secondary metabolism and morphogenesis. Actinomycetologica (Tokyo) 5: 119–125.

    Google Scholar 

  33. Ikeda, H. and S. Ōmura. 1991. Strategic strain improvement of antibiotic producer. Actinomycetologica (Tokyo) 5: 86–99.

    Google Scholar 

  34. Ikeda, H. and S. Ōmura. 1991. Genetics of antibioticproducingStreptomyces. Kitasato Arch. Exp. Med. 63: 143–155.

    Google Scholar 

  35. Ikeda, H., H. Kotaki and S. Ōmura. 1987. Genetic studies of avermectin biosynthesis inStreptomyces avermitilis. J. Bacteriol. 169: 5615–5621.

    PubMed  Google Scholar 

  36. Imamura, N., H. Kuga, K. Otoguro, H. Tanaka and S. Ōmura. 1989. Structures of jietacins: unique α, β-unsaturated azoxy antibiotics. J. Antibiot. 42: 156–158.

    PubMed  Google Scholar 

  37. Inaoka, Y., H. Tamaoki, S. Takahashi, R. Enokita and T. Okazaki. 1986. Propioxatins A and B, new enkephalinase B inhibitors. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. 39: 1368–1377.

    PubMed  Google Scholar 

  38. Inatomi, N., H. Satoh, Y. Maki, N. Hashimoto, Z. Itoh and S. Ōmura. 1989. An erythromycin derivative, EM-523, induces motilin-like gastrointestinal motility in dogs. J. Pharmacol. Exp. Ther. 251: 707–712.

    PubMed  Google Scholar 

  39. Ingber, D., T. Fujita, S. Kishimoto, K. Sudo, T. Kanamaru, H. Brem and J. Folkman. 1990. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 348: 555–557.

    PubMed  Google Scholar 

  40. Inokoshi, J., H. Takeshima, H. Ikeda and S. Ōmura. 1992. Cloning and sequencing of the aculeacin A acylase gene fromActinoplanes utahensis and its expression inStreptomyces lividans. Gene (in press).

  41. Ishihara, N., M. Iwama and B. Kobayashi. 1989. Stabilization of blood platelet microtubular system by staurosporine. Life Sci. 44: 1309–1316.

    PubMed  Google Scholar 

  42. Itoh, Z., S. Takeuchi, I. Aizawa and T. Takayanagi. 1978. Characteristics notor activity of the gastrointestinal tract in fasted conscious dogs measured by implanted force transducers. Am. J. Dig. Dis. 23: 229–238.

    PubMed  Google Scholar 

  43. Itoh, Z., T. Suzuki, M. Nakaya, Y. Inoue and S. Mitsuhashi. 1984. Gastrointestinal motor-stimulating activity of macrolide antibiotics and analysis of their side effects on the canine gut. Antimicrob. Agents Chemother. 26: 863–869.

    PubMed  Google Scholar 

  44. Iwai, Y., A. Nakagawa, N.Sadakane, S. Ōmura, H. Oiwa, S. Matsumoto, M. Takahashi, T. Ikai and Y. Ochiai. 1980. Herbimycin B, a new benzoquinoid ansamycin with anti-TMV and herbicidal activites. J. Antibiot. 33: 1114–1119.

    PubMed  Google Scholar 

  45. Kakinuma, S., H. Ikeda and S. Ōmura. 1991. Genetic studies of the biosynthesis of kalafungin, a benzoisochromanequinone antibiotic. Tetrahedron 47: 6059–6068.

    Google Scholar 

  46. Kamiryo, T., Y. Nishikawa, M. Mishina, M. Terao and S. Numa. 1979. Involvement of long-chain acyl coenzyme A for lipid synthesis in repression of acyl-coenzyme A carboxylase inCandida albicans. Proc. Natl. Acad. Sci. USA 76: 4390–4394.

    PubMed  Google Scholar 

  47. Kaneko, H., T. Sasaki, N.S. Ramamurthy and L.M. Golub. 1990. Tetracycline administration normalizes the structure and acid phosphatase activity of osteoclasts in streptozotocin-induced diabetic rats. Anatom. Rec. 227: 427–436.

    Google Scholar 

  48. Khan, N., A. Graslund, A. Ehrenberg and J. Shriver. 1990. Sequence-specific1H-NMR assignments and secondary structure of porcine motilin. Biochemistry 29: 5743–5751.

    PubMed  Google Scholar 

  49. Kirsch, D.R., M.H. Lai, J. McCullough and A.M. Gillum. 1991. The use of β-galactosidase gene fusions to screen for antibacterial antibiotics. J. Antibiot. 44: 210–217.

    PubMed  Google Scholar 

  50. Kirst, H.A., K.E. Willard, M. Debono, J.E. Toth, B.A. Truedell, J.P. Leeds, J.L. Ott, A.M. Felty-Duckworth, F.T. Counter, E.E. Ose, G.D. Grouse, J.M. Tustin and S. Ōmura. 1989. Structure-activity studies of 20-deoxo-20-amino derivatives of tylosin-related macrolides. J. Antibiot. 42: 1673–1683.

    PubMed  Google Scholar 

  51. Kishore, G.M. and D.M. Shah. 1988. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57: 627–663.

    PubMed  Google Scholar 

  52. Komiyama, K., K. Okada, Y. Hirokawa, K. Masuda, S. Tomisaka and I. Umezawa. 1985. Antitumor activity of a new antibiotic, kazusamycin. J. Antibiot. 38: 224–229.

    PubMed  Google Scholar 

  53. Komiyama, K., S. Funayama, Y. Anraku, M. Ishibashi, Y. Takahashi and S. Ōmura. 1990. Novel antibiotics, furaquinocins A and B. Taxonomy, fermentation, isolation and physico-chemical and biological characteristics. J. Antibiot. 43: 247–252.

    PubMed  Google Scholar 

  54. Kondo, Y., K. Torii, S. Ōmura and Z. Itoh. 1988. Erythromycin and its derivatives with motilin-like biological activities inhibit the specific binding of125I-motilin to duodenal muscle. Biochem. Biophys. Res. Commun. 150: 877–882.

    PubMed  Google Scholar 

  55. Konishi, M. and T. Oki. 1991. A novel class of antitumor antibiotics containing a cyclodiyne skeleton: activity and mechanism of action. Actinomycetologica (Tokyo) 5: 1–9.

    Google Scholar 

  56. Kuder H.V. 1960. Propionyl erythromycin. A review of 20525 case reports for side effect data. Clin. Pharmacol. Ther. 1: 604–609.

    PubMed  Google Scholar 

  57. Kumagai, H., H. Nishida, N. Imamura, H. Tomoda and S. Ōmura. 1990. The structure of atpenins A4, A5 and B, new antifungal antibiotics produced byPenicillium sp. J. Antibiot. 43: 1553–1558.

    PubMed  Google Scholar 

  58. Kunze, B., W. Trowitzsch-Kienast, G. Hoefle and H. Reichenbach. 1992. Nannochelins A, B and C, new ion-chelating compounds fromNannocystis exedens (Myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 45: 147–150.

    PubMed  Google Scholar 

  59. Kurisaki, T., J. Magae, K. Isono, K. Nagai and M. Yamasaki. 1992. Effect of tautomycin, a protein phosphatase inhibitor, on recycling of mammalian cell surface molecules. J. Antibiot. 45: 252–257.

    PubMed  Google Scholar 

  60. Lechevalier, M.P. and H. Lechevalier. 1970. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20: 435–443.

    Google Scholar 

  61. Maeda, M., T. Kodama, N. Iwasawa, N. Higuchi and N. Amano. 1989. Production of aspartic proteinase inhibitors byKitasatosporia kyotoensis. European Patent Application 0316, 907 A2.

    Google Scholar 

  62. Matthews, H.W. and B.F. Wade. 1977. Pharmacologically active compounds from microbial origin. Adv. Appl. Microbiol. 21: 269–288.

    PubMed  Google Scholar 

  63. McGuire, J.M., R.L. Bunch, R.C. Anderson, H.E. Boaz, E.H. Flyan, H.M. Powell and J.W. Smith. 1952. Ilotycin, a new antibiotic. Antibiot. Chemother. 2: 281–283.

    Google Scholar 

  64. Mizuno, K., A. Yagi, S. Satoi, M. Takada, M. Hayashi, K. Asano and T. Matuda. 1977. Studies on aculeacin. I: Isolation and characterization of aculeacin A. J. Antibiot. 30: 297–302.

    PubMed  Google Scholar 

  65. Mori, H., S. Funayama, Y. Sudo, K. Komiyama and S. Ōmura. 1990. A new antibiotic, 13-hydroxyglucopiericidin A. Isolation, structure elucidation and biological characteristics. J. Antibiot. 43: 1329–1331.

    PubMed  Google Scholar 

  66. Murao, S., T. Sakai, H. Gibo, T. Nakayama and T. Shin. 1991. An novel trehalase inhibitor, trehalostatin, produced byAmycolatopsis trehalostaticus. Agric. Biol. Chem. 55: 895–897.

    Google Scholar 

  67. Murata, M., H. Tanaka and S. Ōmura. 1987. 7-Hydro-8-methylpteroylglutamic acid, a new anti-folate from an actinomycete. Fermentation, isolation, structure and biological activity. J. Antibiot. 40: 251–257.

    PubMed  Google Scholar 

  68. S.-Nakagawa, P., Y. Fukushi, K. Maebashi, N. Imamura, Y. Takahashi, Y. Tanaka, H. Tanaka and S. Ōmura. 1986. Izupeptins A and B, new glycopeptide antibiotics produced by an actinomycete. J. Antibiot. 39: 1719–1723.

    PubMed  Google Scholar 

  69. Nakagawa, A., Y. Iwai, H. Shimizu and S. Ōmura. 1986. Enhanced antimicrobial activity of acetyl derivatives of cervinomycin. J. Antibiot. 39: 1636–1638.

    PubMed  Google Scholar 

  70. Nakagawa, A., N. Fukamachi, K. Yamaki, M. Hayashi, S. Oh-ishi, B. Kobayashi and S. Ōmura. 1987. Inhibition of platelet aggregation by medermycin and its related isochromanequinone antibiotics. J. Antibiot. 40: 1075–1076.

    PubMed  Google Scholar 

  71. Neuroth, A.R. and S.B.H. Kent. 1988. The pre-S region of hepadnavirus envelope proteins. Adv. Viral Res. 34: 65–142.

    Google Scholar 

  72. Nicolaou, K.C. and W.M. Dai. 1991. Chemistry and biology of the endiyne anticancer antibiotics. Angew. Chem. 30: 1387–1416.

    Google Scholar 

  73. Nishida, H., H. Tomoda, J. Cao, S. Araki, S. Okuda and S. Ōmura. 1991. Purpactins, new inhibitors of acyl-CoA: cholesterol acyl-transferase produced byPenicillium purpurogenum. III. Chemical modification of purpactin A. J. Antibiot. 44: 152–159.

    PubMed  Google Scholar 

  74. Nishikawa, K., C. Shibasaki, M. Hiratsuka, M. Arakawa, K. Takahashi and T. Takeuchi. 1991. Antitumor spectrum of deoxyspergalin and its lack of cross-resistnace to other antitumor agents. J. Antibiot. 44: 1101–1109.

    PubMed  Google Scholar 

  75. Ochi, K. 1989. Heterogeneity of ribosomal proteins amongStreptomyces species and its application to identification. J. Gen. Microbiol. 135: 2635–2642.

    PubMed  Google Scholar 

  76. Oda, K., Y. Fukuda, S. Murao, K. Uchida and M. Kainosho. 1989. A novel proteinase inhibitor, tyrostatin, inhibiting some pepstatin-insensitive carboxyl proteinases. Agric. Biol. Chem. 53: 405–415.

    Google Scholar 

  77. Oikawa, T., K. Hirotani, M. Shimamura, H. Ashino-Fuse and T. Iwaguchi. 1989. Powerful antiangiogenic activity of herbimycin A (named angiostatic antibiotic). J. Antibiot. 42: 1202–1204.

    PubMed  Google Scholar 

  78. Oki, T., O. Tenmyo, M. Hirano, K. Tomatsu and H. Kamei. 1990. Pradimicins A, B and C. New antifungal antibiotics. II. In vitro and in vivo biological activities. J. Antibiot. 43: 763–770.

    PubMed  Google Scholar 

  79. Ōmura, S. 1986. Philosophy of new drug discovery. Microbiol. Rev. 50: 259–279.

    PubMed  Google Scholar 

  80. Ōmura, S. 1988. Search for bioactive compounds from microorganisms-Strategy and methods. In: Biology of Actinomycetes-88 (Okami, Y., T. Beppu and H. Ogawara, eds.), pp. 26–32, Japanese Scientific Society Press, Tokyo.

    Google Scholar 

  81. Ōmura, S. and Y. Tanaka. 1991. Strategy and methods in screening of microbial metabolites for plant protection. In: Pesticide Chemistry (Frehse, H., ed.), pp. 87–96, VCH Publishers, Weinheim.

    Google Scholar 

  82. Ōmura, S., Y. Iwai, A. Hirano, A. Nakagawa, J. Awaya, H. Tsuchiya and Y. Tanahashi. 1977. A new alkaloid AM-2282 of streptomycete origin. Taxonomy, fermentation, isolation and preliminary characterization. J. Antibiot. 30: 275–282.

    PubMed  Google Scholar 

  83. Ōmura, S., A. Nakagawa and N. Sadakane. 1979. Structure of herbimycin, a new ansamycin antibiotic. Tetrahedron Lett. 1979: 4223–4326.

    Google Scholar 

  84. Ōmura, S., Y. Iwai, Y. Takahashi, K. Kojima, K. Otoguro and R. Oiwa. 1981. Type of diaminopimelic acid different in aerial and vegetative mycelia of setamycin-producing actinomycete KM-6054. J. Antibiot. 34: 1633–1634.

    PubMed  Google Scholar 

  85. Ōmura, S., K. Otoguro, T. Nishikiori, R. Oiwa and Y. Iwai. 1981. Setamycin, a new antibiotic. J. Antibiot. 34: 1253–1256.

    PubMed  Google Scholar 

  86. Ōmura, S., H. Ikeda, F. Malpartida, H.M. Kieser and D.A. Hopwood. 1986. Production of new hybrid antibiotics, mederrhodins A and B by a genetically engineered strain. Antimicrob. Agents Chemother. 29: 13–19.

    PubMed  Google Scholar 

  87. Ōmura, S., N. Imamura, K. Kawakita, Y. Mori, Y. Yamazaki, R. Masuma, Y. Takahashi, H. Tanaka, L.-Y. Huang and H.B. Woodruff. 1986. Ahpatinins, new acid protease inhibitors containing 4-amino-3-hydroxy-5-phenylpentanoic acid. J. Antibiot. 39: 1079–1085.

    PubMed  Google Scholar 

  88. Ōmura, S., N. Imamura, R. Oiwa, H. Kuga, R. Iwata, R. Masuma and Y. Iwai. 1986. Clostomicins, new antibiotics produced byMicromonospora echinospora subsp.Armeniaca subsp. nov. I. Production, isolation, and physicochemical and biological properties. J. Antibiot. 39: 1407–1412.

    PubMed  Google Scholar 

  89. Ōmura, S., A. Nakagawa, N. Fukamachi, K. Ogoturo and B. Kobayashi. 1986. Aggreceride, a new platelet aggregation inhibitor fromStreptomyces. J. Antibiot. 39: 1180–1181.

    PubMed  Google Scholar 

  90. Ōmura, S., H. Tomoda, Q.-M. Xu, Y. Takahashi and Y. Iwai. 1986. Triacsins, new inhibitors of acyl-CoA synthetase produced byStreptomyces. J. Antibiot. 39: 1211–1218.

    PubMed  Google Scholar 

  91. Ōmura, S. A. Nakagawa, N. Fukamachi, M. Miura, Y. Takahashi, K. Komiyama and B. Kobayashi. 1988. OM-4842, a new platelet aggregation inhibitor fromStreptomyces. J. Antibiot. 41: 812–813.

    PubMed  Google Scholar 

  92. Ōmura, S., Y. Tanaka, K. Hisatome, S. Miura, Y. Takahashi, A. Nakagawa, H. Imai and H.B. Woodruff. 1988. Phthoramycin, a new antibiotic active against a plant pathogen,Phytophtora sp. J. Antibiot. 41: 1910–1912.

    PubMed  Google Scholar 

  93. Ōmura, S., S. Eda, S. Funayama, Y. Takahashi, K. Komiyama and H.B. Woodruff. 1989. Studies on a novel antitumor antibiotic, phenazinomycin: Taxonomy, fermentation, isolation, and physico-chemical and biological characteristics. J. Antibiot. 42: 1037–1042.

    PubMed  Google Scholar 

  94. Ōmura, S., Y. Tanaka, K. Kanaya, M. Shinose and Y. Takahashi. 1990. Phthoxazolin, a specific inhibitor of cellulose biosynthesis, produced by a strain ofStreptomyces sp. J. Antibiot. 43: 738–741.

    Google Scholar 

  95. Ōmura, S., T. Fujimoto, K. Otoguro, K. Matsuzaki, R. Moriguchi, H. Tanaka and Y. Sasaki. 1991. Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. J. Antibiot. 44: 113–116.

    PubMed  Google Scholar 

  96. Ōmura, S., H. Ikeda and H. Tanaka. 1991. Selective production of specific components of avermectins inStreptomyces avermitilis. J. Antibiot. 44: 560–563.

    PubMed  Google Scholar 

  97. Ōmura, S., Y. Kondo and Z. Itoh. 1990. Motilide, motilinlike macrolide. In: Motilin (Itoh, Z., ed.), pp. 245–256, Academic Press, New York.

    Google Scholar 

  98. Ōmura, S., K. Matsuzaki, T. Fujimoto, K. Kosuge, T. Furuya, S. Fujita and A. Nakagawa. 1991. Structure of lactacystin, a new microbial metabolite which induces differentiation of neuroblastoma cells. J. Antibiot. 44: 117–118.

    PubMed  Google Scholar 

  99. Osada H., H. Koshino, T. Kudo, R. Onose and K. Isono. 1992. A new inhibitor of protein kinase C, RK-1409 (7-oxostaurosporine). I. Taxonomy, and biological activity. J. Antibiot. 45: 189–194.

    PubMed  Google Scholar 

  100. Parker, W.L., J. O'Sullivan and R.B. Sykes. 1986. Naturally occurring monobactams. Adv. Appl. Microbiol. 31: 181–205.

    PubMed  Google Scholar 

  101. Peczynska-Czoch, W., M. Mordarski, L. Kaczmarek and P. Nanka-Namiriski. 1987. Microbial transformation of azacarbozoles. I. N-methylation of alpha-, beta-, and gammacarbolines byKitasatosporia setae strain. Arch. Immunol. Ther. Exp. 35: 89–95.

    Google Scholar 

  102. Perlman, D. and G.P. Peruzzotti. 1970. Microbial metabolites as potentially useful pharmacologically active agents. Adv. Appl. Microbiol. 12: 227–294.

    Google Scholar 

  103. Sakuda, S., Y. Nishimoto, M. Ohi, M. Watanabe, S. Takayama, A. Isogai and Y. Yamada. 1990. Effect of demethylallosamidin, a potent yeast chitinase inhibitor, on the cell division of yeast. Agric. Biol. Chem. 54: 1333–1335.

    Google Scholar 

  104. Sasaki, Y., M. Seto, K. Komatu and S. Ōmura. 1991. Staurosporine, a protein kinase inhibitor, attenuates intracellular calcium ion-dependent contractions of strips of rabbit aorta. Eur. J. Pharmacol. 202: 367–372.

    PubMed  Google Scholar 

  105. Satoh, T., N. Inotomi, H. Satoh, S. Marui, Z. Itoh and S. Ōmura. 1990. EM-523, an erythromycin derivative, and motilin show similar contractile activity in isolated rabbit intestine. J. Pharmacol. Exp. Ther. 254: 940–944.

    PubMed  Google Scholar 

  106. Sawada, H., M. Motoike, S. Kudo, T. Watanabe and A Kuroda. 1989. Manufacture of phospholipase D withKitasatosporia SK-60. Japan Kokai Tokyo Koho JP 01-80, 285.

  107. Schulman, M.D., D. Valentino, S. Streicher and C. Ruby. 1987.Streptomyces avermitilis' mutants defective in methylation of avermectins. Antimicrob. Agents Chemother. 31: 744–747.

    PubMed  Google Scholar 

  108. Schwartz, J.P. and E. Costa. 1978. Regulation of nerve growth-factor content in a neuroblastoma cell line. Neuroscience 3: 473–480.

    PubMed  Google Scholar 

  109. Serizawa, N., K. Nakagawa, K. Hamano, Y. Tsujita, A. Terahara and H. Kuwano. 1983. Microbial hydroxylation of ML-236B (compactin) and monacolin K (MB-530B). J. Antibiot. 36: 604–607.

    PubMed  Google Scholar 

  110. Shibata, K., S. Satsumabayashi, A. Nakagawa and S. Ōmura. 1986. The structure and cytocidal activity of herbimycin C. J. Antibiot. 39: 1630–1633.

    PubMed  Google Scholar 

  111. Smith III, A.B., J.L. Wood, W. Wong, A.E. Gould, C.J. Rizzo, S. Funayama and S. Ōmura. 1990. (+)-Trienomycins A, B, and C: Relative and absolute stereochemistry. J. Am. Chem. Soc. 112: 7425–7426.

    Google Scholar 

  112. Taguchi, R., H. Sugawara, Y. Miyazaki, T. Mizuno, M. Nomura, M. Sugiyama, H. Saito, G. Yabuta and A. Furuichi. 1989. Agrochemical F-0368 manufacture withKitasatosporia. Japan Kokai Tokyo koho JP 01-231, 892.

  113. Takahashi, Y. 1989. Discovery and taxonimic studies of the genusKitasatosporia. Actinomycetologica (Tokyo) 3: 55–62 (in Japanese).

    Google Scholar 

  114. Takahashi, Y. and S. Ōmura. 1987.Kitasatosporia, a genus of the order Actinomycetales. Kitasato Arch. Exp. Med. 60: 1–14.

    PubMed  Google Scholar 

  115. Takahashi, Y., Y. Iwai and S. Ōmura. 1983. Relationship between cell morphology and the types of diaminopimelic acid inKitasatosporia setae. J. Gen. Appl. Microbiol. 29: 459–465.

    Google Scholar 

  116. Takahashi, Y., Y. Iwai, H. Tomoda, R. Nimura, T. Kinoshita and S. Ōmura. 1989. Optical resolution of 2,6-diaminopimelic acid stereoisomers by high performance liquid chromatography for the chemotaxomy of actinomycete strains. J. Gen. Appl. Microbiol. 35: 27–32.

    Google Scholar 

  117. Takahashi, Y., Y. Iwai and S. Ōmura. 1991. Mode of submerged spore formation inKitasatosporia setae. J. Gen. Appl. Microbiol. 37: 261–266.

    Google Scholar 

  118. Takahashi, Y., Y. Seki, Y. Iwai and S. Ōmura. 1991. Taxomic properties of fiveKitasatosporia strains isolated by a new method. Kitasato Arch. Exp. Med. 64: 123–132.

    PubMed  Google Scholar 

  119. Takeshima, H., J. Inokoshi, Y. Takada, H. Tanaka and S. Ōmura. 1989. A deacylation enzyme for aculeacin A, a neutral lipopeptide antibiotic fromActinoplanes utahensis: purification and characterization. J. Biochem. 105: 606–610.

    PubMed  Google Scholar 

  120. Takeuchi, T., T. Hara, H. Naganawa, M. Okada, M. Hamada, H. Umezawa, S. Gomi, M. Sezaki and S. Kondo. 1988. New antifungal antibiotics, benanomicins A and B from an Actinomycete. J. Antibiot. 41: 807–811.

    PubMed  Google Scholar 

  121. Tamamura, T., T. Sawa, K. Isshiki, T. Masuda, Y. Homma, H. Iinuma, H. Naganawa, M. Hamada, T. Takeuchi and H. Umezawa. 1985. Isolation and characterization of terpentecin, a new antitumor antibiotic. J. Antibiot. 38: 1664–1669.

    PubMed  Google Scholar 

  122. Tamaoki, T. 1991. Use and specificity of staurosporine UCN-01, and calphostin C as protein kinase inhibitors. In: Methods in Enzymology, Vol. 201. Protein Phosphorylation Part B (Hunter, T. and B.M. Sefton, eds.), pp. 340–347, Academic Press, San Diego.

    Google Scholar 

  123. Tamaoki, T. and H. Nakano. 1990. Potent and specific inhibitors of protein kinase C of microbial origin. Biol./ Technology 8: 732–733.

    Google Scholar 

  124. Tanaka, H. and S. Ōmura. 1989. New adenosine deaminase inhibitors, adechlorin and adecypenol. In: Novel Microbial Products for Medicine and Agriculture (Demain, A.L., G.A. Somkuti, J.C. Hunter-Cevera and H.W. Rossmoore, eds.), pp. 67–72. Elsevier, Amsterdam.

    Google Scholar 

  125. Tanaka, Y., K. Hirata, Y. Takahashi, Y. Iwai and S. Ōmura. 1987. Globopeptin, a new antifungal peptide antibiotic. J. Antibiot. 40: 242–244.

    PubMed  Google Scholar 

  126. Tomoda, H. and S. Ōmura. 1990. New strategy for discovery of enzyme inhibitors: Screening with intact mammalian cells or intact microorganisms having special functions. J. Antibiot. 42: 1207–1222.

    Google Scholar 

  127. Tomoda, H., R. Iwata, Y. Takahashi, Y. Iwai, R. Oiwa and S. Ōmura. 1986. Lustromycin, a new antibiotic produced byStreptomyces sp. J. Antibiot. 39: 1205–1210.

    PubMed  Google Scholar 

  128. Tomoda, H., K. Igarashi and S. Ōmura. 1987. Inhibition of acyl-CoA synthetase by triacsins. Biochim. Biophys. Acta 921: 595–598.

    PubMed  Google Scholar 

  129. Tomoda, H., H. Kumagai, H. Tanaka and S. Ōmura. 1987. F-244 specifically inhibits 3-hydroxy-3-methyl-glutarylcoenzyme A synthase. Biochim. Biophys. Acta 922: 351–356.

    PubMed  Google Scholar 

  130. Tomoda, H., H. Kumagai, Y. Tanaka, Y. Iwai and S. Ōmura. 1988. F-244 (1233A), a specific inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A synthase: Taxonomy of producing strain, fermentation, isolation and biological properties. J. Antibiot. 41: 247–249.

    PubMed  Google Scholar 

  131. Tomoda, H., K. Igarashi, J.C. Cyong and S. Ōmura. 1987. Evidence for an essential role of long chain acyl-CoA synthetase in animal cell proliferation. J. Biol. Chem. 266: 4214–4219.

    Google Scholar 

  132. Tomoda, H., H. Nishida, R. Masuma, C. Cao, S. Okuda and S. Ōmura. 1991. Purpactins, new inhibitors of acyl-CoA: cholesterol acyltransferase produced byPenicillium purpurogenum. I. Production, isolation and physico-chemical and biological properties. J. Antibiot. 44: 136–143.

    PubMed  Google Scholar 

  133. Traxler, P., W. Kump, K. Mueller and W. Tosch. 1990. Hypolipidemic activity of rifamycin derivatives. J. Med. Chem. 33: 552–560.

    PubMed  Google Scholar 

  134. Uehara, Y., M. Hori, T. Takeuchi and H. Umezawa. 1985. Screening of agents which convert ‘transformed morphology’ of Rous sarcoma virus-infected rat kidney cells to ‘normal morphology’: Identification of an active agent as herbimycin and its inhibition of intracellularsrc kinase. Jpn. J. Cancer Res. (Gann) 76: 672–675.

    Google Scholar 

  135. Uehara, Y., Y. Murakami, Y. Sugimoto and S. Mizuno. 1989. Mechanism of reversion of Rous sarcoma virus transformation by herbimycin A: Reduction of total phosphotyrosine levels due to reduced kinase activity and increased turnover of p60v-src. Cancer Res. 49: 780–785.

    PubMed  Google Scholar 

  136. Umezawa, I., K. Komiyama, H. Oka, K. Okada, S. Tomisaka, T. Miyano and S. Takano. 1984. A new antitumor antibiotic, kazusamycin. J. Antibiot. 37: 706–711.

    PubMed  Google Scholar 

  137. Umezawa, K. and M. Imoto. 1991. Use of erbstatin as protein-tyrosine kinase inhibitor. In: Methods in Enzymology Vol. 201. Protein phosphorylation Part B (Hunter, T. and B.M. Sefton, eds.), pp. 379–385, Academic Press, San Diego.

    Google Scholar 

  138. Wakisaka, Y., Y. Kawamura, Y. Sasuda, K. Koizumi and Y. Nishimoto. 1982. A selective isolation procedure forMicromonospora. J. Antibiot. 35: 822–836.

    PubMed  Google Scholar 

  139. Weber, J.M., J.O. Leung, S.J. Swanson, K.B. Idler and J.B. McAlpine. 1991. An erythromycin derivative produced by targeted gene disruption inSaccharopolyspora erythreae. Science 252: 114–117.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omura, S. Trends in the search for bioactive microbial metabolites. Journal of Industrial Microbiology 10, 135–156 (1992). https://doi.org/10.1007/BF01569759

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569759

Key words

Navigation