Skip to main content
Log in

Selected factors limiting the microbial degradation of recalcitrant compounds

  • Published:
Journal of Industrial Microbiology

Summary

The focus of this review is to examine some of the reasons biodegradation may not take place in the environment even though its occurrence in the laboratory has been demonstrated. Some approaches for dealing with chemical persistence will be discussed. In addition, the potential of bioremediation as an in situ clean-up technology will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul, A.S. and T.L. Gibson. 1991. Laboratory studies of surfactant-enhanced washing of polychlorinated biphenyl from sandy material. Environ. Sci. Technol. 25: 665–671.

    Google Scholar 

  2. Abdul, A.S., T.L. Gibson and D.N. Rai. 1990. Selection of surfactants for the removal of petroleum products from shallow sandy aquifers. Ground Water 28: 920–926.

    Google Scholar 

  3. Abramowicz, D. 1990. Aerobic and anaerobic biodegradation of PCBs, a review. Crit. Rev. Biotechnol. 10: 241–251.

    Google Scholar 

  4. Adiaens, P. and D. D. Focht. 1990. Continuous coculture degradation of selected polychlorinated biphenyl congeners byAcinetobacter spp. in an aerobic reactor system. Environ. Sci. Technol. 24: 1042–1049.

    Google Scholar 

  5. Ahmed, M. and D.D. Focht. 1972. Degradation of polychlorinated biphenyls by two species ofAchromobacter. Can. J. Microbiol. 19: 47–52.

    Google Scholar 

  6. Al-Bashir, B., T. Cseh, R. Leduc and R. Samson. 1990. Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions. Appl. Microbiol. Biotechnol. 34: 414–419.

    PubMed  Google Scholar 

  7. Alexander, M. 1985. Biodegradation of organic chemicals. Environ. Sci. Technol. 19: 106–111.

    Google Scholar 

  8. Alvarez, P.J.J. and T.M. Vogel. 1991. Substrate interactions of benzene, toluene, andpara-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl. Environ. Microbiol. 57: 2981–2985.

    PubMed  Google Scholar 

  9. Alvarez-Cohen, L. and P.L. McCarty. 1991. Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl. Environ. Microbiol. 57: 228–235.

    PubMed  Google Scholar 

  10. Alvarez-Cohen, L. and P.L. McCarty. 1991. Product toxicity and cometabolic competitive inhibition modelling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl. Environ. Microbiol. 57: 1031–1037.

    PubMed  Google Scholar 

  11. Alvarez-Cohen, L. and P.L. McCarty. 1991. Two-stage dispersed-growth treatment of halogenated aliphatic compounds by cometabolism. Environ. Sci. Technol. 25: 1387–1393.

    Google Scholar 

  12. Ang, C.C. and A.S. Abdul. 1991. Aqueous surfactant washing of residual oil contamination from sandy soil. Ground Water Monit. Rev. 11: 121–127.

    Google Scholar 

  13. Arciero, D., T. Vannelli, M. Logan and A. B. Hooper. 1989. Degradation of trichloroethylene by the ammonia-oxidizing bacteriumNitrosomonas europaea. Biochem. Biophys. Res. Commun. 159: 640–643.

    PubMed  Google Scholar 

  14. Aronstein, B.A. and M. Alexander. 1992. Surfactants at low concentrations stimulate biodegradation of sorbed hydrocarbons of aquifer sands and soil slurries. Environ. Toxicol. Chem. 11: 1227–1233.

    Google Scholar 

  15. Aronstein, B.A., Y.M. Calvillo and M. Alexander. 1991. Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sci. Technol. 25: 1728–1731.

    Google Scholar 

  16. Atlas, R.M. 1991. Microbial hydrocarbon degradation, bioremediation of oil spills. J. Chem. Technol. 52: 149–156.

    Google Scholar 

  17. Belliveau, B.H., M.E. Starodub, C. Cotter and J.T. Trevors. 1987. Metal resistance and accumulation in bacteria. Biotechnol. Adv. 5: 101–127.

    PubMed  Google Scholar 

  18. Berg, G., A.G. Seech, H. Lee and J.T. Trevors. 1990. Identification and characterization of a soil bacterium with extracellular emulsifying activity. J. Environ. Sci. Health 25: 753–764.

    Google Scholar 

  19. Boethling, R.S. and M. Alexander. 1979. Effect of concentration of organic chemicals on their biodegradation by natural microbial communities. Appl. Environ. Microbiol. 37: 1211–1216.

    Google Scholar 

  20. Boethling, R.S. and M. Alexander. 1979. Microbial degradation of organic compounds at trace levels. Environ. Sci. Technol. 13: 989–991.

    Google Scholar 

  21. Bossert, I.D. and R. Bartha. 1986. Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bull. Environ. Contam. Toxicol. 37: 490–495.

    PubMed  Google Scholar 

  22. Bouwer, E.J. and P.L. McCarty. 1983. Transformation of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45:1286–1294.

    PubMed  Google Scholar 

  23. Bouwer, E.J. and P.L. McCarty. 1983. Transformations of halogenated organic compounds under denitrification conditions. Appl. Environ. Microbiol. 45: 1295–1299.

    PubMed  Google Scholar 

  24. Boyle, M. 1989. The environmental microbiology of chlorinated aromatic decomposition. J. Environ. Qual. 18: 395–402.

    Google Scholar 

  25. Brown, N.L., D.A. Rouch and B.T.O. Lee. 1992. Copper resistance determinants in bacteria. Plasmid 27: 41–51.

    PubMed  Google Scholar 

  26. Brunner, W., F.H. Sutherland and D.D. Focht. 1985. Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment and bacterial inoculation. J. Environ. Qual. 14: 324–328.

    Google Scholar 

  27. Brynhildsen, L. and T. Rosswall. 1989. Effects of cadmium, copper, magnesium, and zinc on the decomposition of citrate byKlebsiella sp. Appl. Environ. Microbiol. 55: 1375–1379.

    PubMed  Google Scholar 

  28. Cervantes, C. and S. Silver. 1992. Plasmid chromate resistance and chromate reduction. Plasmid 27: 65–71.

    PubMed  Google Scholar 

  29. Chaudry, G.R. and S. Chapalamadugu. 1991. Biodegradation of halogenated organic compounds. Microbiol. Rev. 55: 59–79.

    PubMed  Google Scholar 

  30. Chen, S. and M. Alexander. 1989. Reasons for the acclimation for 2,4-D biodegradation in lake water. J. Environ. Qual. 18: 153–156.

    Google Scholar 

  31. Chen, M., C.S. Hong, B. Bush and G.-Y. Rhee. 1988. Anaerobic biodegradation of polychlorinated biphenyls by bacteria from Hudson river sediments. Ecotoxicol. Environ. Saf. 16: 95–105.

    PubMed  Google Scholar 

  32. Crawford, R.L. and W.W. Mohn. 1985. Microbiological removal of pentachlorophenol from soil using aFlavobacterium. Enz. Microb. Technol. 7: 617–620.

    Google Scholar 

  33. Dalton, H. and D.I. Stirling. 1982. Co-metabolism. Philos. Trans. Royal Soc. London Ser. B 297: 481–496.

    Google Scholar 

  34. Deweerd, K.A., R.S. Mandelco, R.S. Tanner, C.R. Woeses and J.M. Suflita. 1990.Desulfominile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154: 23–30.

    Google Scholar 

  35. Di Toro, D.M. and L.M. Horzempa. 1982. Reversible and resistant components of PCB adsorption-desorption: isotherms. Environ. Sci. Technol. 16: 594–602.

    Google Scholar 

  36. DiStefano, T.D., J.M. Gosset and S.H. Zinder. 1991. Reductive dechlorination of tetrachloethane to ethane by an anaerobic enrichment culture in the absence of methanogenesis. Appl. Environ. Microbiol. 57: 2287–2292.

    PubMed  Google Scholar 

  37. Doelle, H.W. 1975. Bacterial Metabolism, pp. 490–557. Academic Press, New York.

    Google Scholar 

  38. Dolfing, J. 1990. Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium: strain DCB-1. Arch. Microbiol. 153: 264–266.

    PubMed  Google Scholar 

  39. Dolfing, J. and J.M. Tiedje. 1986. Hydrogen cycling in threetiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol. Ecol. 38: 293–298.

    Google Scholar 

  40. Dolfing, J. and J.M. Tiedje. 1987. Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch. Microbiol. 149: 102–105.

    PubMed  Google Scholar 

  41. Dzombak, D.A. and R.G. Luthy. 1984. Estimating adsorption of PAHs on soils. Soil Sci. 137: 292–308.

    Google Scholar 

  42. Edgehill, R.U. and R.K. Finn. 1983. Microbial treatment of soil to remove pentachlorophenol. Appl. Environ. Microbiol. 45: 1122–1125.

    Google Scholar 

  43. Ellis, W.D., J.R. Payne and G.D. McNabb. 1985. Treatment of Contaminated Soils with Aqueous Surfactants. United States Environmental Protection Agency, Office of Research and Development. Order No. PB 86-122 561/AS.

  44. Elzerman, A.W. and J.T. Coates. 1987. Hydrophobic organic compounds on sediments, equilibria and kinetics of sorption. In: Sources and Fates of Aquatic Pollutants (Hites, R.A. and S.J. Eisenrich, eds), pp. 263–317. American Chemical Society, Washington, DC.

    Google Scholar 

  45. England, L.A., H. Lee and J.T. Trevors. 1993. Bacterial survival in soil: effects of clay and protozoa. Soil Biol. Biochem. 25: 525–531.

    Google Scholar 

  46. Evans, P.J., D.T. Mang and L.Y. Young. 1991. Degradation of toluene andm-xylene and transformation ofo-xylene by denitrifying enrichment cultures. Appl. Environ. Microbiol. 57: 450–454.

    PubMed  Google Scholar 

  47. Falatko, D.M. and J.T. Novak. 1992. Effects of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons. Water Environ. Res. 64: 163–169.

    Google Scholar 

  48. Fathepure, B.Z. and S.A. Boyd. 1988. Dependence of tetrachloroethylene dechlorination on methanogenic substrates consumption byMethanosarcina sp. strain DCM. Appl. Environ. Microbiol. 54: 2976–2980.

    PubMed  Google Scholar 

  49. Fathepure, B.Z., J.M. Tiedje and S.A. Boyd. 1988. Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl. Environ. Microbiol. 54: 327–330.

    PubMed  Google Scholar 

  50. Fliermans, C.B., T.J. Phelps, D. Ringelberg, A.T. Mikell and D.C. White. 1988. Mineralization of trichloroethylene by heterotrophic enrichment cultures. Appl. Environ. Microbiol. 54: 1709–1714.

    Google Scholar 

  51. Foght, J.M. and D.W. Westlake. 1988. Degradation of polycyclic aromatic hydrocarbons and aromatic heterocyles by a pseudomonas species. Can. J. Microbiol. 35: 1135–1141.

    Google Scholar 

  52. Foght, J.M., D.L. Gutnick and D.W. Westlake. 1989. Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Appl. Environ. Microbiol. 55: 36–42.

    Google Scholar 

  53. Fontes, D.E., A.L. Mills, G.M. Hornberger and J.S. Herman. 1991. Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 57: 2473–2481.

    PubMed  Google Scholar 

  54. Freedman, D.L. and J.M. Gosset. 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55: 2144–2151.

    PubMed  Google Scholar 

  55. Freedman, D.L. and J.M. Gosset. 1991. Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl. Environ. Microbiol. 57: 2847–2857.

    PubMed  Google Scholar 

  56. Furukawa, K., N. Hayase, K. Taira and N. Tomizuka. 1989. Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated catabolism, some soil bacteria possess a highly conservedbph operon. J. Bacteriol. 171: 5467–5472.

    PubMed  Google Scholar 

  57. Furukawa, K., N. Tomizuka and A. Kaminayashi. 1979. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38: 301–310.

    PubMed  Google Scholar 

  58. Gannon, J.T., V.B. Manilal and M. Alexander. 1991. Relationship between cell surface properties and transport of bacteria through soil. Appl. Environ. Microbiol. 57: 190–193.

    Google Scholar 

  59. Gannon, J.T., Y. Tan, P. Baveye and M. Alexander. 1991. Effect of sodium chloride on transport bacteria in a saturated aquifer material. Appl. Environ. Microbiol. 57: 2497–2501.

    PubMed  Google Scholar 

  60. Genthener, B.R.S., W.A. Price II and P.H. Pritchard. 1989. Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl. Environ. Microbiol. 55: 1466–1471.

    Google Scholar 

  61. Ghosal, D., I.-S. You, D.K. Chatterjee and A.M. Chakrabarty. 1985. Microbial degradation of halogenated compounds. Science 228: 135–142.

    Google Scholar 

  62. Gibson, S.A. and J.M. Suflita. 1986. Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl. Environ. Microbiol. 52: 681–688.

    PubMed  Google Scholar 

  63. Gibson, S.A. and J.M. Suflita. 1990. Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer, stimulation by short-chain organic acids and alcohols. Appl. Environ. Microbiol. 56: 1825–1832.

    Google Scholar 

  64. Goldstein, R.M., L.M. Mallory and M. Alexander. 1985. Reasons for possible failure of inoculation to enhance biodegradation. Appl. Environ. Microbiol. 50: 977–983.

    PubMed  Google Scholar 

  65. Gonzalez, J.F. and W.S. Hu. 1991. Effect of glutamate on the degradation of pentachlorophenol byFlavobacterium sp. Appl. Microbiol. Biotechnol. 35: 100–104.

    Google Scholar 

  66. Greer, L.E. and D.R. Shelton. 1992. Effect of inoculant strain and organic matter content on kinetics of 2,4-dichlorophenoxyacetic acid degradation in soil. Appl. Environ. Microbiol. 58: 1459–1465.

    PubMed  Google Scholar 

  67. Groenewegen, P.E.J., A.J.M. Driessen, W.N. Konings and J.A.M. de Bont. 1990. Energy-dependant uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1. J. Bacteriol. 172: 419–423.

    PubMed  Google Scholar 

  68. Groenewegen, P.E.J., W.J.J. van den Tweel and J.A.M. de Bont. 1992. Anaerobic bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by the coryneform bacterium NTB-1. Appl. Microbiol. Biotechnol. 36: 541–547.

    Google Scholar 

  69. Guerin, W.F. and S.A. Boyd. 1992. Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl. Environ. Microbiol. 58: 1142–1152.

    PubMed  Google Scholar 

  70. Guerin, W.F. and G.E. Jones. 1988. Mineralization of phenanthrene by aMycobacterium sp. Appl. Environ. Microbiol. 54: 937–944.

    PubMed  Google Scholar 

  71. Haag, F., M. Reinhard and P.L. McCarty. 1991. Degradation of toluene andp-xylene in anaerobic microcosms: evidence for sulfate as a terminal electron acceptor. Environ. Toxicol. Chem. 10: 1379–1389.

    Google Scholar 

  72. Harayama, S. and K.N. Timmis. 1989. Catabolism of aromatic hydrocarbons byPseudomonas. In: Genetics of Bacterial Diversity (Hopwood, D.A. and K.A. Chater, eds), pp. 151–174, Academic Press.

  73. Harvey, S., I. Elashvili, J.J. Valdes, D. Kamely and A.M. Chakrabarty. 1990. Enhanced removal ofExxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Bio/Technology 8: 228–230.

    PubMed  Google Scholar 

  74. Haugland, R.A., D.J. Schlemm, R.P. Lyons III, P.R. Sferra and A.M. Chakrabarty. 1990. Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl. Environ. Microbiol. 56: 1357–1362.

    PubMed  Google Scholar 

  75. Heitkamp, M.A. and C.E. Cerniglia. 1988. Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54: 1612–1614.

    PubMed  Google Scholar 

  76. Heitkamp, M.A., W. Franklin and C.E. Cerniglia. 1988. Microbial metabolism of a polycylic aromatic hydrocarbon: isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol. 54: 2549–2555.

    PubMed  Google Scholar 

  77. Hendrikson, H.V., S. Larsen and B.K. Ahring. 1991. Anaerobic degradation of PCP and phenol in fixed-film reactors, the influence of an additional substrate. Water Sci. Technol. 24: 431–436.

    Google Scholar 

  78. Henry, S.M. and D. Grbić-Galić. 1991a. Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer. Appl. Environ. Microbiol. 57: 236–244.

    PubMed  Google Scholar 

  79. Henry, S.M. and D. Grbić-Galić. 1991b. Inhibition of trichloroethylene by the transformation intermediate carbon monoxide. Appl. Environ. Microbiol. 57: 1770–1776.

    PubMed  Google Scholar 

  80. Hiramoto, M., H. Ohtake and K. Toda. 1989. A kinetic study of total degradation of 4-chlorobiphenyl by a two-step culture ofArthrobacter andPseudomonas strains. J. Ferm. Bioeng. 68: 68–70.

    Google Scholar 

  81. Hoeppel, R.E., R.E. Hinchee and M.F. Arthur. 1991. Bioventing soils contaminated with petroleum hydrocarbons. J. Ind. Microbiol. 8: 141–146.

    Google Scholar 

  82. Hoover, D.G., G.E. Borgonovi, S.H. Jones and M. Alexander. 1986. Anomalies in mineralization of low concentrations of organic compounds in lake water and sewage. Appl. Environ. Microbiol. 51: 226–232.

    PubMed  Google Scholar 

  83. Hughes, M.N. and R.K. Poole. 1989. Metals and Microorganisms. pp. 252–302. Chapman and Hall, London.

    Google Scholar 

  84. Hutchins, S.R. 1991a. Optimizing BTEX biodegradation under denitrifying conditions. Environ. Toxicol. Chem. 10: 1437–1448.

    Google Scholar 

  85. Hutchins, S.R. 1991b. Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl. Environ. Microbiol. 57: 2403–2407.

    PubMed  Google Scholar 

  86. Jafvert, C.T. 1991. Sediment- and saturated-soil-associated reactions involving an anionic surfactant (dodecylsulfate). 2. Partition of PAH compounds among phases. Environ. Sci. Technol. 25: 1039–1045.

    Google Scholar 

  87. Jafvert, C.T. and J.K. Heath. 1991. Sediment-and saturatedsoil-associated reactions involving an anionic surfactant (dodecylsulfate). 1. Precipitation and micelle formation. Environ. Sci. Technol. 25: 1031–1038.

    Google Scholar 

  88. Jain, R.K. and G.S. Sayler. 1987. Problems and potential for in situ treatment of environmental pollutants by engineered microorganisms. Microbiol. Sci. 4, 2: 59–63.

    PubMed  Google Scholar 

  89. Jain, R.K., H. Lee and J.T. Trevors. 1992. Effect of addition ofPseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J. Ind. Microbiol. 10: 87–93.

    Google Scholar 

  90. Janke, D. and W. Fritsch. 1985. Nature and significance of microbial co-metabolism of xenobiotics. J. Basic Microbiol. 25: 609–614.

    Google Scholar 

  91. Jota, M.A.T. and J.P. Hasset. 1991. Effects of environmental variables on binding of a PCB congener by dissolved humic substances. Environ. Toxicol. Chem. 10: 483–491.

    Google Scholar 

  92. Karickhoff, S.W. 1981. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 8: 833–846.

    Google Scholar 

  93. Karickhoff, S.W. 1984. Organic pollutant sorption in aquatic systems. J. Hydraul. Eng. 110: 707–735.

    Google Scholar 

  94. Karickhoff, S.W., D.S. Brown and T.A. Scott. 1979. Sorption of hydrophobic pollutants on natural sediments. Water Res. 13: 241–248.

    Google Scholar 

  95. Keuth, S. and H.J. Rehm. 1991. Biodegradation of phenanthrene byArthrobacter polychromogenes isolated from a contaminated soil. Appl. Microbiol. Biotechnol. 34: 804–808.

    Google Scholar 

  96. Kim, C.J. and W.J. Maier. 1986. Acclimation and biodegradation of chlorinated aromatics in the presence of alternate substrates. J. Water Pollu. Control 58: 157–164.

    Google Scholar 

  97. King, G.M. 1988. Dehalogenation in marine sediments containing natural sources of halophenols. Appl. Environ. Microbiol. 54: 3079–3085.

    PubMed  Google Scholar 

  98. Kohring, G.W., X. Zhang and J. Wiegel. 1989. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater in the presence of sulfate. Appl. Environ. Microbiol. 55: 2735–2737.

    PubMed  Google Scholar 

  99. Kuhn, E.P. and J.M. Suffita. 1989. Sequential reductive dehalogenation of chloroanilines by microorganisms from a methanogenic aquifer. Environ. Sci. Technol. 23: 848–852.

    Google Scholar 

  100. Kuhn, E.P., J. Zeyer, P. Eicher and R.P. Schwarzenbach. 1988. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl. Environ. Microbiol. 54: 490–496.

    PubMed  Google Scholar 

  101. Laha, S. and R.G. Luthy. 1991. Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ. Sci. Technol. 25: 1920–1930.

    Google Scholar 

  102. Laha, S. and R.G. Luthy. 1992. Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotechnol. Bioengin. 40: 1367–1380.

    Google Scholar 

  103. Leahy, J.G. and R.R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305–315.

    PubMed  Google Scholar 

  104. Little, C.D., A.V. Palumbo, S.E. Herbes, M.E. Lidstrom, R.L. Tyndall and P.J. Gilmer. 1988. Trichlorothylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54: 951–956.

    Google Scholar 

  105. Liu, D. 1980. Enhancement of PCBs biodegradation by sodium ligninsulfonate. Water Res. 14: 1467–1475.

    Google Scholar 

  106. Liu, D., R.J. Maguire, B.J. Dutka and G.J. Pacepavicius. 1990. Rationale for including metabolites in chemical toxicity bioassay. Toxic. Assess. 5: 179–188.

    Google Scholar 

  107. Liu, D., R.J. Maguire, G. Pacepavicius and B.J. Dutka. 1991. Biodegradation of recalcitrant chlorophenols by cometabolism. Environ. Toxicol. Water Qual. 6: 85–95.

    Google Scholar 

  108. Liu, Z., D.A. Edwards and R.G. Luthy. 1992. Sorption of non-ionic surfactants onto soil. Water Res. 26: 1337–1345.

    Google Scholar 

  109. Lovley, D.R. and D.J. Lonergan. 1990. Anaerobic oxidation of toluene, phenol, andp-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56: 1858–1864.

    Google Scholar 

  110. Lovley, D.R., M.J. Baedecker, D.J. Lonergan, I.M. Cozzarelli, E.J.P. Phillips and D.I. Siegel. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339: 297–299.

    Google Scholar 

  111. Madsen, E.L. and M. Alexander. 1985. Effects of chemical speciation on the mineralization of organic compounds by microorganisms. Appl. Environ. Microbiol. 50: 342–349.

    Google Scholar 

  112. Manilal, V.B. and M. Alexander. 1991. Factors affecting the microbial degradation of phenanthrene in soil. Appl. Microbiol. Biotechnol. 35: 401–405.

    Google Scholar 

  113. Marachesi, J.R., N.J. Russell, G.F. White and W.A. House. 1991. Effects of surfactant adsorption and biodegradability on the distribution of bacteria between sediments and water in a freshwater microcosm. Appl. Environ. Microbiol. 57: 2507–2513.

    PubMed  Google Scholar 

  114. Means, J.C., S.G. Wood, J.J. Hasset and W.L. Banwart. 1980. Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 12: 1524–1528.

    Google Scholar 

  115. Mergeay, M., D. Springael and E. Top. 1990. Gene transfer in polluted soils. In: Bacterial Genetics in Natural Environments (Fry, J.C. and M.J. Day, eds), pp. 152–171. Chapman and Hall, London.

    Google Scholar 

  116. Mihelcic, J.R. and R.G. Luthy 1988. Degradation of polycyclic aromatic hydrocarbon under various redox conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1182–1187.

    PubMed  Google Scholar 

  117. Mihelcic, J.R. and R.G. Luthy. 1988. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1188–1198.

    PubMed  Google Scholar 

  118. Miller, R.M. and R. Bartha. 1989. Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl. Environ. Microbiol. 55: 269–274.

    Google Scholar 

  119. Miller, R.M., G.M. Singer, J.D. Rosen and R. Bartha. 1988. Photolysis primes biodegradation of benzo[a]pyrene. Appl. Environ. Microbiol. 54: 1724–1730.

    PubMed  Google Scholar 

  120. Misra, T.K. 1992. Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 27: 4–16.

    PubMed  Google Scholar 

  121. Mohn, W.W. and J.M. Tiedje. 1990. Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch. Microbiol. 153: 267–271.

    PubMed  Google Scholar 

  122. Mohn, W.W. and J.M. Tiedje. 1992. Microbial reductive dehalogenation. Microbiol. Rev. 56: 482–507.

    PubMed  Google Scholar 

  123. Mondello, F.J. 1988. Cloning and expression inEscherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J. Bacteriol. 171: 1725–1732.

    Google Scholar 

  124. Morgan, P. and R.J. Watkinson. 1989a. Hydrocarbon degradation in soils and methods for soil biotreatment. CRC Crit. Rev. Biotechnol. 8: 305–333.

    Google Scholar 

  125. Morgan, P. and R.J. Watkinson. 1989b. Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds. FEMS Microbiol. Rev. 63: 277–300.

    Google Scholar 

  126. Morris, C.M. and E.A. Barnsley. 1982. The cometabolism of 1- and 2-chloronaphthalene by pseudomonads. Can. J. Microbiol. 28: 73–79.

    Google Scholar 

  127. Mueller, J.G., P.J. Chapman, B.O. Blattmann and P.H. Pritchard. 1990. Isolation and characterization of a fluorantheneutilizing strain ofPseudomonas paucimobilis. Appl. Environ. Microbiol. 56: 1079–1086.

    PubMed  Google Scholar 

  128. Neilson, A.H. 1990. The biodegradation of halogenated organic compounds. J. Appl. Bacteriol. 69: 445–470.

    PubMed  Google Scholar 

  129. Nelson, M.J.K., S.O. Montgomery, W.R. Mahaffey and P.H. Pritchard. 1987. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 53: 949–954.

    PubMed  Google Scholar 

  130. Nelson, M.J.K., S.O. Montgomery and P.H. Pritchard. 1988. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl. Environ. Microbiol. 54: 604–606.

    PubMed  Google Scholar 

  131. Nies, D.H. 1992. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27: 17–28.

    PubMed  Google Scholar 

  132. Nies, L. and T.M. Voel. 1990. Effects of organic substrates on dechlorination of Aroclor 1242 in anaerobic sediments. Appl. Environ. Microbiol. 56: 2612–2617.

    Google Scholar 

  133. O'Reilly, K.T. and R.L. Crawford. 1989. Degradation of pentachlorophenol by polyurethane-immobilizedFlavobacterium cells. Appl. Environ. Microbiol. 55: 2113–2118.

    PubMed  Google Scholar 

  134. Oberbremer, A., R. Muller-Hurtig and F. Wagner. 1990. Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 32: 485–489.

    PubMed  Google Scholar 

  135. Ogram, A. V., R.E. Jessup, L.T. Ou and P.S.C. Rao. 1985. Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic acid in soils. Appl. Environ. Microbiol. 49: 582–587.

    PubMed  Google Scholar 

  136. Oldenhuis, R., L. Kuijk, A. Lammers, D.B. Janssen and B. Witholt. 1989. Degradation of chlorinated and non-chlorinated aromatic solvents in soil suspensions by pure bacterial cultures. Appl. Microbiol. Biotechnol. 30: 211–217.

    Google Scholar 

  137. Oldenhuis, R., J.Y. Oedzes, J.J. van der Waarde and D.B. Janssen. 1991. Kinetics of chlorinated hydrocarbon degradation byMethylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7–14.

    PubMed  Google Scholar 

  138. Parsons, J.R., D.T.H.M. Sijm, A. van Laar and O. Hutzinger. 1988. Biodegradation of chlorinated biphenyls and benzoic acids by aPseudomonas strain. Appl. Microbiol. Biotechnol. 29: 81–84.

    Google Scholar 

  139. Paul, E.A. and F.E. Clark. 1989. Soil Microbiology and Biochemistry. pp. 11–31, Academic Press, New York.

    Google Scholar 

  140. Paya-Perez, A.B., M. Riaz and B.R. Larsen. 1991. Soil sorption of 20 PCB congeners and six chlorobenzenes. Ecotoxicol. Environ. Saf. 21: 1–17.

    PubMed  Google Scholar 

  141. Phelps, T.J., J.J. Niedzielski, K.J. Malachowsky, R.M. Schram, S.E. Herbes and D.C. White. 1991. Biodegradation of mixed-organic wastes by microbial consortia in continuous-recycle expanded-bed bioreactors. Environ. Sci. Technol. 25: 1451–1465.

    Google Scholar 

  142. Phelps, T.J., J.J. Niedzielski, R.M. Schram, S.E. Herbes and D.C. White. 1990. Biodegradation of trichloroethylene in continuous-recyle expanded-bed bioreactors. Appl. Environ. Microbiol. 56: 1702–1709.

    Google Scholar 

  143. Pignatello, J.J. 1990. Slowly reversible sorption of aliphatic halocarbons in soils. I. Formation of residual fractions. Environ. Toxicol. Chem. 9: 1107–1115.

    Google Scholar 

  144. Poremba, K., W. Gunkel, S. Lang and F. Wagner. 1991. Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ. Toxicol. Water Qual. 6: 157–163.

    Google Scholar 

  145. Quensen III, J.F., J.M. Tiedje and S.A. Boyd. 1988. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science 242: 752–754.

    Google Scholar 

  146. Ramadan, M.A., O.M. El-Tayeb and M. Alexander. 1990. Inoculum size as a factor limiting success of inoculation for biodegradation. Appl. Environ. Microbiol. 56: 1392–1396.

    PubMed  Google Scholar 

  147. Ramanand, K. and J.M. Suflita. 1991. Anaerobic degradation ofm-cresol in anoxic aquifer slurries, carboxylation reactions in a sulfate-reducing bacterial enrichment. Appl. Environ. Microbiol. 57: 1689–1695.

    PubMed  Google Scholar 

  148. Rasche, M.R., M.R. Hyman and D.J. Arp. 1991. Factors limiting aliphatic chlorocarbon degradation byNitrosomonas europaea, cometabolic inactivation of ammonia monooxygenase and substrate specificity. Appl. Environ. Microbiol. 57: 2986–2994.

    Google Scholar 

  149. Rhee, G.-Y., B. Bush, M.P. Brown, M. Kane and L. Shane. 1989. Anaerobic biodegradation of polychlorinated biphenyls in Hudson river sediments and dredged sediments in clay encapsulation. Water Res. 23: 957–964.

    Google Scholar 

  150. Robertson, B.K. and M. Alexander. 1992. Influence of calcium, iron, and pH on phosphate availability for microbial mineralization of organic chemical. Appl. Environ. Microbiol. 58: 38–41.

    Google Scholar 

  151. Rojo, F., D.H. Pieper, K.-H. Engesser, H.-J. Knackmuss and K.N. Timmis. 1987. Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238: 1395–1398.

    PubMed  Google Scholar 

  152. Rosenberg, M. and E. Rosenberg. 1981. Role of adherence in growth ofAcinetobacter calcoaceticus RAG-1 on hexadecane. J. Bacteriol. 148: 51–57.

    PubMed  Google Scholar 

  153. Rubin, H.E., R.V. Subba-Rao and M. Alexander. 1982. Rates of mineralization of trace compounds of aromatic compounds in lake water and sewage samples. Appl. Environ. Microbiol. 43: 1133–1138.

    Google Scholar 

  154. Ruckdeschel, G., G. Renner and K. Schwarz. 1987. Effects of pentachlorophenol and some of its known and possible metabolites on different species of bacteria. Appl. Environ. Microbiol. 53: 2689–2692.

    PubMed  Google Scholar 

  155. Said, W.A. and D.L. Lewis. 1991. Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl. Environ. Microbiol. 57: 1498–1503.

    PubMed  Google Scholar 

  156. Sayler, G.S., S.W. Hooper, A.C. Layton and J.M.H. King. 1990. Catabolic plasmids of environmental and ecological significance. Microb. Ecol. 19: 1–20.

    Google Scholar 

  157. Seech, A.G. and J.T. Trevors. 1991. Environmental variables and evolution of xenobiotic catabolism in bacteria. Trends Ecol. Evolut. 6: 79–83.

    Google Scholar 

  158. Semprini, L., P.V. Roberts, G.D. Hopkins and P.L. McCarty. 1990. A field evaluation of in-situ biodegradation of biodegradation of chlorinated ethenes, part 2, results of biostimulation and biotransformation experiments. Ground Water 28: 715–727.

    Google Scholar 

  159. Short, K.A., J.D. Doyle, R.J. King, R.J. Seidler, G. Stotzky and R.H. Olsen. 1991. Effects of 2,4-dichlorophenol, a metabolite of a genetically engineered bacterium, and 2,4-dichlorophenoxyacetate on some microorganism-mediated ecological processes in soil. Appl. Environ. Microbiol. 57: 412–418.

    Google Scholar 

  160. Silver, S. and T.K. Misra. 1988. Plasmid-mediated heavy metal resistances. Ann. Rev. Microbiol. 42: 717–743.

    Google Scholar 

  161. Slawson, R.M., H. Lee and J.T. Trevors. 1990. Bacterial interactions with silver. Biol. Metals 3: 151–154.

    Google Scholar 

  162. Slawson, R.M., M.I. Van Dyke, H. Lee and J.T. Trevors. 1992. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27: 72–79.

    PubMed  Google Scholar 

  163. Steinberg, S.M., J.J. Pignatello and B.L. Sawhney. 1987. Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ. Sci. Technol. 21: 1201–1208.

    Google Scholar 

  164. Stucki, G. and M. Alexander. 1987. Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl. Environ. Microbiol. 53: 292–297.

    PubMed  Google Scholar 

  165. Suflita, M., L.N. Ziang and A. Saxena. 1989. The anaerobic biodegradation ofo-, m-, andp-cresol by sulfate-reducing bacterial enrichment cultures obtained from a shallow anoxic aquifer. J. Ind. Microbiol. 4: 255–266.

    Google Scholar 

  166. Swindoll, C.M., C.M. Aelion and F.K. Pfaender. 1988. Influence of inorganic and organic nutrients on biodegradation and on the adaptation response of subsurface microbial communities. Appl. Environ. Microbiol. 54: 212–217.

    PubMed  Google Scholar 

  167. Thomas, J.M., J.R. Yordy, J.A. Amador and M. Alexander. 1986. Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl. Environ. Microbiol. 52: 290–296.

    PubMed  Google Scholar 

  168. Thurnheer, T., D. Zurer, O. Hoglinger, T. Leisinger and A.M. Cook. 1990. Initial steps in the degradation of benzene sulfonic acid, 4-toluene sulfonic acids, and orthanilic acid inAlcaligenes sp. strain O-1. Biodegradation 1: 55–64.

    PubMed  Google Scholar 

  169. Topp, E. and R.S. Hanson. 1990. Degradation of pentachlorophenol by aFlavobacterium species grown in continuous culture under various nutrient limitations. Appl. Environ. Microbiol. 56: 541–544.

    PubMed  Google Scholar 

  170. Topp, E., R.L. Crawford and R.S. Hanson. 1988. Influence of readily metabolizable carbon on pentachlorophenol metabolism by a pentachlorophenol-degradingFlevobacterium sp. Appl. Environ. Microbiol. 54: 2452–2459.

    PubMed  Google Scholar 

  171. Trett, M.W., S. Shales, B.A. Thake, B. Frankland, D.H. Khan, J.D. Hutchinson and C.F. Mason. 1989. Biological and ecological effects of dispersants. In: The Fate and Effects of Oil in Freshwater (Green, J. and M.W. Trett, eds), pp. 173–195. Elsevier Science Publishers, London.

    Google Scholar 

  172. Trevors, J.T., K.M. Oddie and B.H. Belliveau. 1985. Metal resistance in bacteria. FEMS Microbiol. Rev. 32: 39–54.

    Google Scholar 

  173. Trevors, J.T., J.D. van Elsas, L.S. van Overbeek and M.E. Starodub. 1990. Transport of genetically engineeredPseudomonas fluorescens strain through a soil microcosm. Appl. Environ. Microbiol. 56: 401–408.

    PubMed  Google Scholar 

  174. Tsezos, M. and J.P. Bell. 1989. Comparison of the biosorption and desorption of hazardous organic pollutants by live and dead biomass. Water Res. 23: 561–568.

    Google Scholar 

  175. Tsien, H.C., G.A. Brusseau, R.S. Hanson and L.P. Wackett. 1989. Biodegradation of trichloroethylene byMethylosinus trichosporium OB3b. Appl. Environ. Microbiol. 55: 3155–3161.

    PubMed  Google Scholar 

  176. Valsaraj, K.T. and L.J. Thibodeaux. 1989. Relationships between micelle-water and octanol-water partition coefficients for hydrophobic organics of environmental interest. Water Res. 23: 183–189.

    Google Scholar 

  177. Van den Tweel, W.J.J., J.B. Kok and J.A.M. de Bont. 1987. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-4-bromo-, and 4-iodobenzoate byAlicaligenes denitrificans NTB-1. Appl. Environ. Microbiol. 53: 810–815.

    PubMed  Google Scholar 

  178. Van den Wijngaard, A.J., K.W.H.J. van der Kamp, J. van der Ploeg, F. Pries, B. Kazemier and D.B. Janssen. 1992. Degradation of 1,2-dichloroethane byAncylobacter aquaticus and other facultative methylotrophs. Appl. Environ. Microbiol. 58: 976–983.

    PubMed  Google Scholar 

  179. Van Dyke, M.I., S.L. Gulley, H. Lee and J.T. Trevors. 1993. Evaluation of microbial surfactants for use in the recovery of hydrophobic pollutants from soil. J. Ind. Microbiol. 11: 163–170.

    Google Scholar 

  180. Van Dyke, M.I., H. Lee and J.T. Trevors. 1991. Applications of microbial surfactants. Biotechnol. Adv. 9: 241–252.

    PubMed  Google Scholar 

  181. Van Loosdrecht, M.C.M., J. Lyklema, W. Norde and A.J.B. Zehnder. 1990. Influence of interfaces on microbial activity. Microbiol. Rev. 54: 75–87.

    PubMed  Google Scholar 

  182. Wackett, L.P. and S.R. Householder. 1989. Toxicity of trichloroethylene toPseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723–2725.

    Google Scholar 

  183. Wackett, L.P., G.A. Brusseau, S.R. Householder and R.S. Hanson. 1989. Survey of microbial oxygenases, trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55: 2960–2964.

    PubMed  Google Scholar 

  184. Wang, Y.S., R.V. Subba-Rao and M. Alexander. 1984. Effect of substrate concentration and organic and inorganic compounds on the occurrence and rate of mineralization and cometabolism. Appl. Environ. Microbiol. 47: 1195–1200.

    Google Scholar 

  185. Weissenfels, W.D., M. Beyer and J. Klein. 1990. Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol. 32: 479–484.

    PubMed  Google Scholar 

  186. Weissenfels, W.D., H.J. Klewer and J. Langhoff. 1992. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl. Microbiol. Biotechnol. 36: 689–696.

    PubMed  Google Scholar 

  187. Wiggins, B.A. and M. Alexander. 1988. Role of chemical concentration and second carbon sourcces in acclimation of microbial communities for biodegradation. Appl. Environ. Microbiol. 54: 2803–2807.

    PubMed  Google Scholar 

  188. Wiggins, A.W., S.H. Jones and M. Alexander. 1987. Explanations for the acclimation periods preceding the mineralization of organic chemicals in aquatic environments. Appl. Environ. Microbiol. 53: 791–796.

    PubMed  Google Scholar 

  189. Wild, S.R., M.L. Berrow and K.C. Jones. 1991. The persistence of polynuclear aromatic hydrocarbons (PAHs) in sewage sludge amended agricultural soils. Environ. Pollu. 72: 141–157.

    Google Scholar 

  190. Wild, S.R., J.P. Obbard, C.I. Munn, M.L. Berrow and K.C. Jones. 1991. The long-term persistence of polynuclear aromatic hydrocarbons (PAHs) in an agricultural soil amended with metal-contaminated sewage sludges. Science Total Environ. 101: 235–253.

    Google Scholar 

  191. Winter, R.B., K.M. Yen and B.D. Ensley. 1989. Efficient degradation of trichloroethylene by a recombinantEscherichia coli. Bio/Technology 7: 282–285.

    Google Scholar 

  192. Wodzinski, R.S. and D. Bertolini. 1972. Physical state in which napthalene and bibenzyl are utilized by bacteria. Appl. Microbiol. 23: 1077–1081.

    PubMed  Google Scholar 

  193. Wodzinski, R.S. and J. E. Coyle. 1974. Physical state of phenanthrene for utilization by bacteria. Appl. Microbiol. 27: 1081–1084.

    Google Scholar 

  194. Wodzinski, R.S. and M.J. Johnson. 1968. Yields of bacterial cells from hydrocarbons. Appl. Environ. Microbiol. 16: 1886–1891.

    Google Scholar 

  195. Zaidi, B.R., Y. Murakami and M. Alexander. 1989. Predation and inhibitors in lake water affect the success of inoculation to enhance biodegradation of organic chemicals. Environ. Sci. Technol. 23: 859–863.

    Google Scholar 

  196. Zaidi, B.R., G. Stucki and M. Alexander. 1988. Low chemical concentration and pH as factors limiting the success of inoculation to enhance biodegradation. Environ. Toxicol. Chem. 7: 143–151.

    Google Scholar 

  197. Zhang, Y. and R.M. Miller. 1992. Enhanced octadecane dispersion and biodegradation by aPseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58: 3276–3282.

    PubMed  Google Scholar 

  198. Zhang, X. and J. Wiegel. 1990. Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl. Environ. Microbiol. 56: 1119–1127.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Providenti, M.A., Lee, H. & Trevors, J.T. Selected factors limiting the microbial degradation of recalcitrant compounds. Journal of Industrial Microbiology 12, 379–395 (1993). https://doi.org/10.1007/BF01569669

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569669

Key words

Navigation