Skip to main content
Log in

Spheroplast formation and partial purification of microbodies from hydrocarbon-grown cells ofCladosporium resinae

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

Cells ofCladosporium resinae form greater numbers of microbodies when grown onn-alkanes than when grown on glucose. To facilitate isolation of microbodies, hydrocarbon-grown cells were spheroplasted. Of four spheroplasting agents and five osmotic supports examined, best results were obtained after a 4-h incubation with Novozym 234 plus chitinase and with 0.8 M sorbitol as osmotic support. Equal numbers of spheroplasts were obtained at pH 5.8 and at pH 7.0. Catalase was used as a marker for microbodies and cytochrome-c oxidase as a marker for mitochondria. Urate oxidase, a second marker for microbodies, was not detected in cell extracts. Microbodies were extremely fragile; of eight spheroplast disruption techniques attempted, the best yield of microbodies was obtained using a Teflon homogenizer for 5 min. Microbodies were partially purified by differential and density gradient centrifugation. Best results were obtained with discontinuous Percoll gradients which yielded a fraction enriched in microbodies and one enriched in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahearn, D.G. and S.P. Meyers. 1972. The role of fungi in the decomposition of hydrocarbons in the marine environment. In: Biodeterioration of Materials (Walters, H.A. and E.H. Huck-Van Der Plas, eds.), pp. 12–18, Applied Science Publishers Ltd., London.

    Google Scholar 

  2. Bushnell, L.D. and F.F. Haas. 1941. The utilization of certain hydrocarbons by microorganisms. J. Bacteriol. 41: 653–673.

    Google Scholar 

  3. Cofone, L., J.D. Walker and J.J. Cooney. 1973. Utilization of hydrocarbons byCladosporium resinae. J. Gen. Microbiol. 76: 243–246.

    PubMed  Google Scholar 

  4. Cooney, J.J., C. Siporin and R.A. Smucker. 1980. Physiological and cytological responses to hydrocarbons by the hydrocarbon-using fungusCladosporium resinae. Bot. Mar. 23: 227–232.

    Google Scholar 

  5. Cooney, J.J. and R.A. Smucker. 1983. Cytological and physiological responses ofCladosporium resinae exposed to hydrocarbon. In: Biodeterioration 5 (Oxley, T.A. and S. Barry, eds.), pp. 361–372, John Wiley and Sons Ltd, New York.

    Google Scholar 

  6. Cundell, A.M., W.C. Mueller and R.W. Traxler. 1976. Morphology and ultrastructure of aPenicillium sp. grown onn-hexadecane or peptone. Appl. Environ. Microbiol. 31: 408–414.

    PubMed  Google Scholar 

  7. DeVries, O.M.H. and J.G.H. Wessels. 1972. Release of protoplasts fromSchizophyllum commune by a lytic enzyme preparation fromTrichoderma viride. J. Gen. Microbiol. 73: 13–22.

    Google Scholar 

  8. Duell, E.A., S. Inoue and M.F. Utter. 1964. Isolation and properties of intact mitochondria from spheroplasts of yeasts. J. Bacteriol. 88: 1762–1773.

    PubMed  Google Scholar 

  9. Dürr, M., T. Boller and A. Wiemken. 1975. Polybase induced lysis of yeast spheroplasts. Arch. Microbiol. 105: 319–327.

    PubMed  Google Scholar 

  10. Fukui, S. and A. Tanaka. 1979. Peroxisomes of alkane-and methanol-grown yeasts: metabolic functions and practical applications. J. Appl. Biochem. 1: 171–201.

    Google Scholar 

  11. Graves, L.B., V.N. Armentrout and D.P. Maxwell. 1976. Distribution of glyoxylate-cycle enzymes between microbodies and mitochondria inAspergillus tamarii. Planta 132: 143–148.

    Google Scholar 

  12. Hayashi, H., T. Suga and S. Niinobe. 1971. Studies on peroxisomes. I. Intraparticulate localization of peroxisomal enzymes in rat liver. Biochim. Biophys. Acta 252: 58–68.

    PubMed  Google Scholar 

  13. Hoskins, J.M., G.G. Meynell and F.K. Sanders. 1956. A comparison of methods for estimating the viable count of a suspension of tumour cells. Exp. Cell Res. 11: 297–305.

    PubMed  Google Scholar 

  14. Indge, K.J. 1968. Metabolic lysis of yeast protoplasts. J. Gen. Microbiol. 51: 433–440.

    PubMed  Google Scholar 

  15. Jackson, C., J.E. Dench, D.O. Hall and A.L. Moore. 1979. Separation of mitochondria from contaminating subcellular structures utilizing silica sol gradient centrifugation. Plant Physiol. 64: 150–153.

    Google Scholar 

  16. Jenkins, R.O., T.G. Cartledge and D. Lloyd. 1983. Subcellular fractionation ofCandida stellatoidea after growth with glucose orn-hexadecane. J. Gen. Microbiol. 129: 1171–1185.

    Google Scholar 

  17. Kawamoto, S., A. Tanaka, M. Yamamura, Y. Teranishi, S. Fukui and M. Osumi. 1977. Microbody ofn-alkane-grown yeast: enzyme localization in the isolated microbody. Arch. Microbiol. 112: 1–8.

    PubMed  Google Scholar 

  18. Kobr, M.J. and F. Vanderhaeghe. 1973. Changes in density of organelles fromNeurospora. Experientia 29: 1221–1223.

    PubMed  Google Scholar 

  19. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  Google Scholar 

  20. Mills, G.L. and E.C. Cantino. 1975. Isolation and characterization of microbodies and symphyomicrobodies with different buoyant densities from the fungusBlastocladiella emersonii. Biochem. Biophys. Res. Commun. 67: 1256–1263.

    PubMed  Google Scholar 

  21. Mukherjee, B.B., G. Kraidman and I.D. Hill. 1973. Synthesis of glycols by microbial transformation of some monocyclic terpenes. Appl. Microbiol. 25: 447–453.

    PubMed  Google Scholar 

  22. Mukherjee, B.B., G. Kraidman and I.D. Hill. 1974. Transformation of 1-menthene by aCladosporium: accumulation of β-isopropyl glutaric acid in the growth medium. Appl. Microbiol. 27: 1070–1074.

    Google Scholar 

  23. Neihof, R.A. and ME. May. 1982. Microbial contamination of fuels. Dev. Ind. Microbiol. 22: 781–787.

    Google Scholar 

  24. Osumi, M., M. Naoto, Y. Teranishi, A. Tanaka and S. Fukui. 1974. Ultrastructure ofCandida yeast grown onn-alkanes. Appearance of microbodies and its relationship to high catalase activity. Arch. Microbiol. 99: 181–201.

    PubMed  Google Scholar 

  25. Parbery, D.G. 1968. The soil as a natural source ofCladosporium resinae. In: Biodeterioration of Materials (Walters, H.A. and J.A. Elphick, eds.), pp. 371–380, Elsevier, London.

    Google Scholar 

  26. Parbery, D.G. 1969. The natural occurrence ofCladosporium resinae. Trans. Br. Mycol. Soc. 53: 15–23.

    Google Scholar 

  27. Parbery, D.G. 1971. Biological problems in jet aviation fuel and the biology ofAmorphotheca resinae. Mater. Org. 6: 161–208.

    Google Scholar 

  28. Picataggio, S.K., D.H.J. Schamhart, B.S. Montenecourt and D.E. Eveleigh. 1983. Sphaeroplast formation and regeneration inTrichoderma reesei. Eur. J. Appl. Microbiol. Biotechnol. 17: 121–128.

    Google Scholar 

  29. Polakis, E.S., W. Bartley and G.A. Meek. 1964. Changes in the structure and enzyme activity ofSaccharomyces cerevisiae in response to changes in the environment. Biochem. J. 90: 369–374.

    PubMed  Google Scholar 

  30. Schwitzguebel, J.P., I.M. Møller and J.M. Palmer. 1981. Changes in density of mitochondria and glyoxysomes fromNeurospora crassa: a reevaluation utilizing silica sol gradient centrifugation. J. Gen. Microbiol. 126: 289–295.

    Google Scholar 

  31. Siporin, C. and J.J. Cooney. 1976. Inhibition of glucose metabolism byn-hexadecane inCladosporium (Amorphotheca) resinae. J. Bacteriol. 128: 235–241.

    PubMed  Google Scholar 

  32. Smucker, R.A. and J.J. Cooney. 1981. Cytological responses ofCladosporium resinae when shifted from glucose to hydrocarbon medium. Can. J. Microbiol. 27: 1209–1218.

    Google Scholar 

  33. Teh, J.S. and K.H. Lee. 1973. Utilization ofn-alkanes byCladosporium resinae. Appl. Microbiol. 25: 454–457.

    PubMed  Google Scholar 

  34. Turner, A.P.F., I.J. Higgins and K. Gull. 1980. Microbodies inCladosporium (Amorphotheca) resinae grown on glucose andn-alkanes. FEMS Microbiol. Lett. 9: 115–119.

    Google Scholar 

  35. Walker, J.D. and J.J. Cooney. 1973. Oxidation ofn-alkanes byCladosporium resinae. Can. J. Microbiol. 19: 1325–1330.

    PubMed  Google Scholar 

  36. Walker, J.D. and J.J. Cooney. 1973. Pathway ofn-alkane oxidation inCladosporium resinae. J. Bacteriol. 115: 635–639.

    PubMed  Google Scholar 

  37. Walker, J.D. and J.J. Cooney. 1973. Aliphatic hydrocarbons ofCladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons. Appl. Microbiol. 26: 705–708.

    PubMed  Google Scholar 

  38. Wanner, G. and R.R. Theimer. 1982. Two types of microbodies inNeurospora crassa. Ann. N.Y. Acad. Sci. 386: 269–284.

    PubMed  Google Scholar 

  39. Willets, A.J. 1973. Microbial metabolism in alkylbenzene sulphonates. Fungal metabolism of 1-phenylundecane-p-sulphone and 1-phenyldodecane-p-sulphonate. Antonie van Leeuwenhoek J. Microbiol. Serol. 39: 585–597.

    Google Scholar 

  40. Worthington Biochemical Corp. 1978. Enzymes and Related Biochemicals, 210 pp., Freehold, NJ.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carson, D.B., Cooney, J.J. Spheroplast formation and partial purification of microbodies from hydrocarbon-grown cells ofCladosporium resinae . Journal of Industrial Microbiology 3, 111–117 (1988). https://doi.org/10.1007/BF01569552

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569552

Key words

Navigation