Skip to main content
Log in

Investigation of differences in the tertiary structures of food proteins by small-angle X-ray scattering

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

With current emphasis in bioengineering on developing new and better structure-function relationships for proteins (e.g., the need for predictability of expected properties prior to cloning), practical and reliable methodology for providing characterization of appropriate features has become of increasing importance. The most potent and detailed technique, X-ray crystallography, has severe limitations: it is so demanding and time-consuming that X-ray coordinates are frequently unavailable for materials of interest; its data relate to static and essentially unhydrated structures, whereas proteins exhibit a variety of dynamic features and function in an aqueous environment; and many proteins of technological importance may never be crystallized. Small-angle X-ray scattering, however, is particularly suitable as a methodology that can provide a substantial number of significant geometric parameters consistent with crystallographic results, that can readily show tertiary structural changes occurring under varying conditions, and that can deal with solutions and gels. Results are presented here from small-angle X-ray scattering investigations of the apo and holo forms of chicken egg-white riboflavin-binding protein, chicken egg-white lysozyme, bovine milk-whey α-lactalbumin and β-lactoglobulin, and bovine ribonuclease. We utilize these observations to compare tertiary structures of these proteins as well as conformational changes in these structures, and to provide a basis for discussion of their physical and biological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aschaffenburg, R. and J. Drewry. 1957. Improved method for the preparation of crystalline β-lactoglobulin and α-lactalbumin from cow milk. Biochem. J. 65: 273–277.

    PubMed  Google Scholar 

  2. Aune, K.C., 1968. Thermodynamics of the denaturation of lysozyme. Ph.D. Dissertation, Duke University, Durham, NC.

    Google Scholar 

  3. Becvar, J. and G. Palmer. 1982. The binding of flavin derivatives to the riboflavin-binding protein of egg white. J. Biol. Chem. 257: 5607–5617.

    PubMed  Google Scholar 

  4. Beeman, W.W., P. Kaesberg, J.W. Anderegg and M.B. Webb. 1957. Sizes of particles and lattice defects. In: Handbuch der Physik (Flügge, S., ed.), p. 321–442, Springer, Berlin.

    Google Scholar 

  5. Beychok, S. 1966. Circular dichroism of biological macromolecules. Circular dichroism spectra of proteins and nucleic acids provide insights into solution conformations. Science 154: 1288–1299.

    PubMed  Google Scholar 

  6. Blankenhorn, G. 1978. Riboflavin binding in egg-white flavoprotein: the role of tryptophan and tyrosine. Eur. J. Biochem. 82: 155–160.

    PubMed  Google Scholar 

  7. Blankenhorn, G. 1980. Functional groups of egg-white flavoprotein involved in flavin binding. In: Flavins and Flavoproteins, Proceedings of the 6th International Symposium (Yagi, K. and Yamono, T., eds.), pp. 405–411, Japan Scientific Press, Tokyo.

    Google Scholar 

  8. Brew, K., T.C. Vanaman and R.L. Hill. 1967. Comparison of the amino acid sequence of bovine α-lactalbumin and hens egg white lysozyme. J. Biol. Chem. 242: 3747–3749.

    PubMed  Google Scholar 

  9. Brown, E.M. and H.M. Farrell, Jr. 1978. Interaction of β-lactoglobulin and cytochrome c: complex formation and iron reduction. Arch. Biochem. Biophys. 185: 156–164.

    PubMed  Google Scholar 

  10. Canfield, R.E. 1963. The amino acid sequence of egg white lysozyme. J. Biol. Chem. 238: 2698–2707.

    PubMed  Google Scholar 

  11. Charlwood, P.A. 1957. Partial specific volumes of proteins in relation to composition and environment. J. Am. Chem. Soc. 79: 776–781.

    Google Scholar 

  12. Cowburn, D.A., E.M. Bradbury, C. Crane-Robinson and W.B. Gratzer. 1970. An investigation of the conformation of bovine α-lactalbumin by proton magnetic resonance and optical spectroscopy. Eur. J. Biochem. 14: 83–93.

    PubMed  Google Scholar 

  13. Eàker, D.L. 1962. Structural and enzymatic studies with deslysyl forms of bovine pancreatic ribonuclease. Ph.D. Thesis, Rockerfeller Institute, New York.

    Google Scholar 

  14. Eigel, W.N., J.E. Butler, C.A. Ernstrom, H.M. Farrell, Jr., V.R. Harwalkar, R. Jenness and R. McL. Whitney. 1984. Nomenclature of proteins of cow's milk: fifth revision. J. Dairy Sci. 67: 1599–1631.

    Google Scholar 

  15. Fahey, P.F., D.W. Kupke and J.W. Beams. 1969. Effect of pressure on the apparent specific volume of proteins. Proc. Natl. Acad. Sci. USA 63: 548–555.

    PubMed  Google Scholar 

  16. Farrell, H.M., Jr., M.J. Behe and J.A. Enyeart. 1987. Binding of p-nitrophenyl phosphate and other aromatic compounds by β-lactoglobulin. J. Dairy Sci. 70: 252–258.

    PubMed  Google Scholar 

  17. Farrell, H.M., Jr., E.G. Buss and C.O. Claggett. 1970. The nature of the biochemical lesion in avian renal riboflavinuria. V. Elucidation of riboflavin transport in the laying hen. Int. J. Biochem. 1: 168–172.

    Google Scholar 

  18. Farrell, H.M., Jr., M.F. Malette, E.G. Buss and C.O. Claggett. 1969. The nature of the biochemical lesion in avian renal riboflavinuria. III. The isolation and characterization of the riboflavin-binding protein from egg albumen. Biochim. Biophys. Acta 194: 433–442.

    PubMed  Google Scholar 

  19. Froehlich, J.A., A.H. Merill, Jr., C.O. Claggett and D.B. McCormick. 1980. Affinity chromatographic purification and comparison of riboflavin-binding proteins from laying hen liver and blood and from egg yolk. Comp. Biochem. Physiol. 66B: 397–401.

    Google Scholar 

  20. Georges, C., S. Guinand and J. Tonnelat. 1962. Etude thermodynamique de la dissociation réversible de la β-lactoglobuline B pour des pH supérieurs à 5,5. Biochim. Biophys. Acta 59: 737–739.

    PubMed  Google Scholar 

  21. Godovac-Zimmermann, J., A. Conti, J. Liberatori and G. Braunitzer. 1985. Homology between the primary structure ofβ-lactoglobulins and human retinol binding protein: evidence for a similar biological function? Biol. Chem. Hoppe-Seyler 366: 431–434.

    PubMed  Google Scholar 

  22. Gordon, W.G., J.J. Basch and E.B. Kalan. 1961. Amino acid composition of β-lactoglobulins A, B, and AB. J. Biol. Chem. 236: 2908–2911.

    PubMed  Google Scholar 

  23. Gordon, W.G. and J. Ziegler. 1955. Amino acid composition of crystalline α-lactalbumin. Arch. Biochem. Biophys. 57: 80–86.

    Google Scholar 

  24. Goren, D.W., R. Aschaffenburg, A. Camerman, J.C. Coppola, P. Dunnill, R.M. Simmons, E.S. Komorowski, L. Sawyer, E.M.C. Turner and K.F. Woods. 1979. Structure of bovine β-lactoglobulin at 6Å resolution. J. Mol. Biol. 131: 375–397.

    PubMed  Google Scholar 

  25. Guinier, A. 1939. La diffraction des rayons X aux très petits angles: application à l'étude de phénomènes ultramicroscopiques. An. Phys. (Paris) 12: 161–237.

    Google Scholar 

  26. Guinier, A. and G. Fournet. 1955. Small Angle Scattering of X-rays, pp. 24, 80, 133, Wiley, New York.

    Google Scholar 

  27. Kanarek, L. 1963. D.Sc. Thesis, Free University of Brussels, Brussels.

  28. Kratky, O. 1963. X-ray small angle scattering with substances of biological interest in diluted solutions. In: Progress in Biophysics and Molecular Biology (Butler, J.A.V., H.E. Huxley and R.E. Zirkle, eds.), Vol. 13, pp. 105–173, Pergamon Press, MacMillan, New York.

    Google Scholar 

  29. Krigbaum, W.R. and F.R. Kügler. 1970. Molecular conformation of egg-white lysozyme and bovine α-lactalbumin in solution. Biochemistry 9: 1216–1223.

    PubMed  Google Scholar 

  30. Kronman, M.J. 1968. Similarity in backbone conformation of egg white lysozyme and bovine α-lactalbumin. Biochem. Biophys. Res. Commun. 33: 535–541.

    PubMed  Google Scholar 

  31. Kronman, M.J. and R.E. Andreotti. 1964. Inter- and intramolecular interactions of α-lactalbumin. I. The apparent heterogeneity at acid pH. Biochemistry 3: 1145–1151.

    Google Scholar 

  32. Kronman, M.J., S.K. Sinha and K. Brew. 1981. Characteristics of the binding of Ca2+ and other divalent metal ions to bovine α-lactalbumin. J. Biol. Chem. 256: 8582–8587.

    PubMed  Google Scholar 

  33. Kumosinski, T.F. and S.N. Timasheff. 1966. Molecular interactions in β-lactoglobulin. X. The stoichiometry of the β-lactoglobulin mixed tetramerization. J. Am. Chem. Soc. 88: 5635–5642.

    Google Scholar 

  34. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 277: 680–685.

    Google Scholar 

  35. Lowry, O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    PubMed  Google Scholar 

  36. Luzzati, V. 1957. Interprétation géométrique de la diffusion aux petits angles d'un faisceau de rayons X de section infiniment haute et étroite. Acta Crystallogr. 10: 136–138.

    Google Scholar 

  37. Luzzati, V. 1960. Interpretation des mesures absolues de diffusion centrale des rayons X en collimation ponctuelle ou linéaire: solutions des particules globulaire et de bâtonnets. Acta Crystallogr. 13: 939–945.

    Google Scholar 

  38. Luzzati, V., J. Witz and A. Nicolaieff. 1961. Determination of the mass and dimensions of proteins in solution by X-ray scattering measured on an absolute scale: example of lysozyme. J. Mol. Biol. 3: 367–378.

    Google Scholar 

  39. Luzzati, V., J. Witz and A. Nicolaieff. 1961. The structure of bovine serum albumin in solution at pH 5.3 and 3.6; study by absolute scattering of X-rays. J. Mol. Biol. 3: 379–392.

    PubMed  Google Scholar 

  40. MacDonald, R.C., D.M. Engelman and T.A. Steitz. 1979. Small angle X-ray scattering of dimeric yeast hexokinase in solution. J. Biol. Chem. 254: 2942–2943.

    PubMed  Google Scholar 

  41. MacDonald, R.C., T.A. Steitz and D.M. Engelman. 1979. Yeast hexokinase in solution exhibits a large conformational change upon binding glucose or glucose 6-phosphate. Biochemistry 18: 338–342.

    PubMed  Google Scholar 

  42. Maw, A.J.G. 1954. Inherited riboflavin deficiency in chicken eggs. Poultry Sci. 33: 216–271.

    Google Scholar 

  43. McKenzie, H.A. and W.H. Sawyer. 1967. Effect of pH on β-lactoglobulins. Nature (Lond.) 214: 1101–1104.

    Google Scholar 

  44. Murakami, K., P.J. Andree and L.J. Berliner. 1982. Metal ion binding to α-lactalbumin species. Biochemistry 21: 5488–5494.

    PubMed  Google Scholar 

  45. Nishikimi, M. and Y. Kyogoka. 1973. Flavin-protein interaction in egg white flavoprotein. J. Biochem. (Tokyo) 73: 1233–1242.

    Google Scholar 

  46. Osuga, D.T. and R.E. Feeney. 1968. Biochemistry of the egg-white proteins of the ratite group. Arch. Biochem. Biophys. 124: 560–574.

    PubMed  Google Scholar 

  47. Pedersen, K.O. 1936. Ultracentrifugal and electrophoretic studies on the milk proteins. II. The lactoglobulin of Palmer. Biochem. J. 30: 961–970.

    Google Scholar 

  48. Permyakov, E.A., V.V. Yarmolenko, L.P. Kalinichenko, L.A. Morozova and E.A. Burstein. 1981. Calcium binding to α-lactalbumin: structural rearrangements and association constant by protein fluorescence changes. Biochem. Biophys. Res. Commun. 100: 191–197.

    PubMed  Google Scholar 

  49. Pervaiz, S. and K. Brew. 1985. Homology of β-lactoglobulin, serum retinol binding protein, and protein HC. Science 228: 335–337.

    PubMed  Google Scholar 

  50. Pessen, H., T.F. Kumosinski, S.N. Timasheff, R.R. Calhoun, Jr. and J.A. Connelly. 1970. A new absolute-scale small-angle X-ray scattering instrument. In: Advances in X-Ray Analysis (Henke, B.L., J.B. Newkirk and G.R. Mallett, eds.), Vol. 13, pp. 618–631, Plenum Press, New York.

    Google Scholar 

  51. Pessen, H., J.M. Purcell and H.M. Farrell, Jr. 1985. Proton relaxation rates of water in dilute solutions of β-lactoglobulin. Determination of cross relaxation and correlation with structural changes by the use of two genetic variants of a self-associating globular protein. Biochim. Biophys. Acta 228: 1–12.

    Google Scholar 

  52. Phillips, J.W. 1963. Physical and chemical properties of a riboflavin-binding protein. Ph.D. Thesis, Pennsylvania State University, University Park, PA.

    Google Scholar 

  53. Pickover, C.A., D.B. McKay, D.M. Engleman and T.A. Steitz. 1979. Substrate binding closes the cleft between the domains of yeast phosphoglycerate kinase. J. Biol. Chem. 254: 11323–11329.

    PubMed  Google Scholar 

  54. Porod, G. 1951. The X-ray small-angle scattering of closepacked colloid system. Kolloid-Z. 124: 83–114.

    Google Scholar 

  55. Quiocho, F.A., G.L. Gilliland, M.E. Newcomer, D.M. Miller, III, J.W. Pflugrath, M.A. Saper and J.S. Olson. 1980. Structure and function of binding proteins for transport and chemotaxis in bacteria. Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2103.

    Google Scholar 

  56. Roels, H., G. Préaux and R. Lontie. 1971. Polarimetric and chromatographic investigation of the irreversible transformation of β-lactoglobulin A and B upon alkaline denaturation. Biochimie 53: 1085–1093.

    PubMed  Google Scholar 

  57. Rothen, A. 1940. Molecular weight and electrophoresis of crystalline ribonuclease. J. Gen. Physiol. 24: 203–211.

    Google Scholar 

  58. Shiga, K., K. Horiike, Y. Nishina, S. Otani, H. Watari and T. Yamano. 1979. A study of flavin-protein and flavoprotein-ligand interactions. Binding aspects and spectral properties ofd-amino acid oxidase and riboflavin binding protein. J. Biochem. (Tokyo) 85: 931–941.

    Google Scholar 

  59. Smyth, D.G., W.H. Stein and S. Moore. 1963. The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmations. J. Biol. Chem. 238: 227–234.

    Google Scholar 

  60. Soulé, J.L. 1957. La détermination des surfaces et des interfaces spécifiques par diffusion centrale du rayonnement X. I. Fondements théoriques. J. Phys. Radium Phys. Appl. Suppl. 18: 90A-102A.

    Google Scholar 

  61. Strosberg, A.D., C. Nihoul-Deconinck and L. Kanarek. 1970. Weak immunological cross-reaction between bovine α-lactalbumin and hen's egg-white lysozyme. Nature (Lond.) 227: 1241–1242.

    Google Scholar 

  62. Stuart, D.I., K.R. Acharya, N.P.C. Walker, S.G. Smith, M. Lewis and D.C. Phillips. 1986. α-lactalbumin possesses a novel calcium binding loop. Nature (Lond.) 324: 84–87.

    Google Scholar 

  63. Tanford, C., L.G. Bunville and Y. Nozaki. 1959. The reversible transformation of β-lactoglobulin at pH 7.5. J. Am. Chem. Soc. 81: 4032–4035.

    Google Scholar 

  64. Timasheff, S.N. 1963. The application of light scattering and small-angle X-ray scattering to interacting biological systems. In: Electromagnetic Scattering (Kerker, M., ed.), pp. 337–355, Pergamon, New York.

    Google Scholar 

  65. Timasheff, S.N. 1964. Light and small angle X-ray scattering and biological macromolecules. J. Chem. Ed. 41: 314–320.

    Google Scholar 

  66. Timasheff, S.N. 1964. The nature of interactions in proteins derived from milk. In: Symposium on Foods: Proteins and Their Reactions (Schultz, H.W. and A.F. Angelmeier, eds.), p. 174, Avi, Westport, CT.

    Google Scholar 

  67. Timasheff, S.N. and R. Townend. 1961. Molecular interactions in β-lactoglobulin. V. The association of the genetic species of β-lactoglobulin below the isoelectric point. J. Am. Chem. Soc. 83: 464–469.

    Google Scholar 

  68. Timasheff, S.N. and R. Townend. 1964. Structure of the β-lactoglobulin tetramer. Nature (Lond.) 203: 517–519.

    Google Scholar 

  69. Townend, R. 1965. β-lactoglobulins A and B: the environment of the Asp/Gly difference residue. Arch. Biochem. Biophys. 109: 1–6.

    PubMed  Google Scholar 

  70. Townend, R., R.J. Winterbottom and S.N. Timasheff. 1960. Molecular interactions in β-lactoglobulin. II. Ultracentrifugal and electrophoretic studies of the association of β-lactoglobulin below its isoelectric point. J. Am. Chem. Soc. 82: 3161–3168.

    Google Scholar 

  71. Waissbluth, M.D. and R.A. Grieger. 1974. Alkaline denaturation of β-lactoglobulins. Activation parameters and effect on dye binding site. Biochemistry 13: 1285–1288.

    PubMed  Google Scholar 

  72. Warme, D.K., F.A. Momay, S.V. Rumball, R.W. Tuttle and H.A. Scheraga. 1974. Computation of structures of homologous proteins. α-lactalbumin from lysozyme. Biochemistry 13: 768–782.

    PubMed  Google Scholar 

  73. Winter, W.P., E.G. Buss, C.O. Claggett and R.V. Boucher. 1967. The nature of the biochemical lesion in avian renal riboflavinuria. II. The inherited change of a riboflavin-binding protein from blood and eggs. Comp. Biochem. Physiol. 22: 897–906.

    PubMed  Google Scholar 

  74. Witz, J., S.N. Timasheff and V. Luzzati. 1964. Molecular interactions in β-lactoglobulin. VIII. Small-angle X-ray scattering investigation of the geometry of β-lactoglobulin A tetramerization. J. Am. Chem. Soc. 86: 168–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Agricultural Research Service, U.S. Department of Agriculture. Reference to brand or firm name does not constitute endorsement by the U.S. Department of Agriculture over others of a similar nature not mentioned.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pessen, H., Kumosinski, T.F. & Farrell, H.M. Investigation of differences in the tertiary structures of food proteins by small-angle X-ray scattering. Journal of Industrial Microbiology 3, 89–103 (1988). https://doi.org/10.1007/BF01569550

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569550

Key words

Navigation