Skip to main content
Log in

Application of computerized infrared and Raman spectroscopy to conformation studies of casein and other food proteins

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

The ability of modern biotechnology to produce new or modified proteins has outpaced current understanding of the relationship between protein structure and protein function. Resolution-enhanced infrared spectroscopy and Raman spectroscopy are excellent non-destructive techniques for investigating the secondary structure of proteins under a wide variety of conditions. The techniques yield rapid, reliable estimates of the proportion of helical structure, β-strands, and turns of proteins in solution, as gels, or as solids. These methodologies can also detect subtle variations in protein conformation that frequently occur upon change of the biomolecular environment. In particular, it is possible to study structural changes which arise from alterations in pH, ionic strength, nature of solvent, and from interactions with other molecules or ions, such as another protein or Ca2+ ions. The first part of this paper will briefly review various important aspects of the techniques. The subsequent part describes application to structural problems of casein and other food proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berjot, M., J. Marx and A.J.P. Alix. 1987. Determination of the secondary structure of proteins from the Raman amide I band: The reference intensity profiles method. J. Raman Spectrosc. 18: 289–300.

    Google Scholar 

  2. Byler, D.M., H.M. Farrell, Jr. and H. Susi. 1988. Raman spectroscopic study of casein structure. J. Dairy Sci. 71: in press.

  3. Byler, D.M. and H. Susi. 1986. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25: 469–487.

    PubMed  Google Scholar 

  4. Cameron, D.G., A. Martin and H.H. Mantsch. 1983. Membrane isolation alters the gel to liquid crystal transition ofAcholeplasma laidlawii B. Science 219: 180–182.

    PubMed  Google Scholar 

  5. Creamer, L.K., T. Richardson and D.A.D. Parry. 1981. Secondary structure of bovine αs1- and β-caseins in solution. Arch. Biochem. Biophys. 211: 689–696.

    Google Scholar 

  6. Eckert, K., R. Grosse, J. Malur and K.R.H. Repke. 1977. Calculation and use of protein-derived conformation-related spectra for the estimate of the secondary structure of proteins from their infrared spectra. Biopolymers 16: 2549–2563.

    PubMed  Google Scholar 

  7. Haris, P.I., D.C. Lee and D. Chapman. 1986. A Fourier transform infrared investigation of the structural differences between ribonuclease A and ribonuclease S. Biochim. Biophys. Acta 874: 255–265.

    PubMed  Google Scholar 

  8. Kauppinen, J.K., D.J. Moffatt, H.H. Mantsch and D.G. Cameron. 1981. Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl. Spectrosc. 35: 271–276.

    Google Scholar 

  9. Koenig, J.L. and D.L. Tabb. 1980. Infrared spectra of globular proteins in aqueous solutions. In: Analytical Applications of FT-IR to Molecular and Biological Systems (Durig, J.R. ed.), pp. 241–255. D. Riedel Publishing Co., Dordrecht.

    Google Scholar 

  10. Krimm, S. and J. Bandekar. 1986. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 38: 183–364.

    Google Scholar 

  11. Levine, B.A. and D.C. Dalgarno. 1983. The dynamics and function of calcium-binding proteins. Biochim. Biophys. Acta 726: 187–204.

    PubMed  Google Scholar 

  12. Levitt, M. and J. Greer. 1977. Automatic identification of secondary structure of globular proteins. J. Mol. Biol. 114: 181–239.

    PubMed  Google Scholar 

  13. Lippert, J.L., D. Tyminski and P.J. Desmeules. 1976. Determination of the secondary structure of proteins by laser Raman spectroscopy. J. Am. Chem. Soc. 98: 7075–7080.

    PubMed  Google Scholar 

  14. Mantsch, H.H., P.W. Yang and H.L. Casal. 1986. Infrared spectrometry of living systems: current trends and perspectives. J. Mol. Struct. 141: 237–242.

    Google Scholar 

  15. Moore, S. and W.H. Stein. 1973. Chemical structures of pancreatic ribonuclease and deoxyribonuclease. Science 180: 458–464.

    PubMed  Google Scholar 

  16. Olinger, J.M., D.M. Hill, R.J. Jakobsen and D.S. Brody. 1986. Fourier transform infrared studies of ribonuclease in H2O and2H2O solutions. Biochim. Biophys. Acta 869: 89–98.

    PubMed  Google Scholar 

  17. Papiz, M.Z., L. Sawyer, E.E. Eliopoulos A.C.T. North, J.B.C. Findlay, R. Sivaprasadarao T.A. Jones, M.E. Newcomer and P.J. Kraulis. 1986. The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324: 383–385.

    PubMed  Google Scholar 

  18. Parker, F.S.. 1983. Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry, pp. 83–153, Plenum Press, New York.

    Google Scholar 

  19. Pézolet, M., M. Pigeon-Gosselin and L. Coulombe. 1976. Laser Raman investigation of the conformation of human immunoglobulin G. Biochim. Biophys. Acta 453: 502–512.

    PubMed  Google Scholar 

  20. Purcell, J.M. and H. Susi. 1984. Solvent denaturation of proteins as observed by resolution enhanced Fourier transform infrared spectroscopy. J. Biochem. Biophys. Methods 9: 193–199.

    PubMed  Google Scholar 

  21. Rüegg, M., V. Metzger and H. Susi. 1975. Computer analyses of characteristic infrared bands of globular proteins. Biopolymers 14: 1465–1471.

    PubMed  Google Scholar 

  22. Stryer, L. 1981. Biochemistry, p. 37, W.H. Freeman and Company, New York.

    Google Scholar 

  23. Susi, H. and D.M. Byler. 1983. Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochem. Biophys. Res. Commun. 115: 391–397.

    PubMed  Google Scholar 

  24. Susi, H. and D.M. Byler. 1986. Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 130: 290–311.

    PubMed  Google Scholar 

  25. Susi, H. and D.M. Byler. 1987. Fourier transform infrared study of proteins with parallel β-chains. Arch. Biochem. Biophys. 258: 465–469.

    PubMed  Google Scholar 

  26. Susi, H. and D.M. Byler. 1988. Fourier deconvolution of the amide I Raman band of food proteins as related to conformation. Appl. Spectrosc. 42: in press.

  27. Susi, H., S.N. Timasheff and L. Stevens. 1967. Infrared spectra and protein conformation in aqueous solutions. I. The amide I band in H2O and D2O solution. J. Biol. Chem. 242: 5460–5466.

    PubMed  Google Scholar 

  28. Timasheff, S.N., H. Susi and L. Stevens. 1967. Infrared spectra and protein conformation in aqueous solutions. II. Survey of globular proteins. J. Biol. Chem. 242: 5467–5473.

    PubMed  Google Scholar 

  29. Vogel, H., J.K. Wright and F. Jähnig. 1985. The structure of the lactose permease derived from Raman spectroscopy and prediction methods. EMBO J. 4: 3625–3631.

    PubMed  Google Scholar 

  30. Williams, R.W.. 1983. Estimation of protein secondary structure from the laser Raman amide I spectrum. J. Mol. Biol. 166: 581–603.

    PubMed  Google Scholar 

  31. Williams, R.W. 1986. Protein secondary structure analysis using Raman amide I and amide III spectra. Methods Enzymol. 130: 311–331.

    PubMed  Google Scholar 

  32. Yang, W.-J., P.R. Griffiths, D.M. Byler and H. Susi. 1985. Protein conformation by infrared spectroscopy: resolution enhancement by Fourier self-deconvolution. Appl. Spectrosc. 39: 282–287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byler, D.M., Susi, H. Application of computerized infrared and Raman spectroscopy to conformation studies of casein and other food proteins. Journal of Industrial Microbiology 3, 73–88 (1988). https://doi.org/10.1007/BF01569549

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569549

Key words

Navigation