Documenta Ophthalmologica

, Volume 43, Issue 1, pp 65–89 | Cite as

Blur: A sufficient accommodative stimulus

  • Stephen Phillips
  • Lawrence Stark
Article

Abstract

Experiments under a variety of open and closed loop feedback configurations demonstrate that accommodative responses to target blur are equivalent to those to defocus blur; this supports blur as the ‘sufficient’ neurological stimulus to accommodations. The hunting action of accommodation compensates for the even error aspect of blur and also adaptively minimizes any close loop error components while finally accepting open loop components.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M.J. The stimulus to accommodation.Amer. J. Optom.: 422–431 (1954).Google Scholar
  2. Alpern, M. Is accommodation related merely to accommodation stimulus?AMA Arch. Ophthal. 60:358–360 (1958).Google Scholar
  3. Badal, J. Rauvel optometric: Donnant à la fais et dans une seule operation, la mesure de la refraction oculaire et celle de l'acuite visuelle.Ann. Oculist. 175:5–13 (1976).Google Scholar
  4. Baxter, DeYoung, St. George & Shurcliff. Focusing a high-power microscope.J. Optical Soc. Amer. 47:76–80 (1957).Google Scholar
  5. Bliss, J.D. & H.D. Crane. Optical detector for objects within an adjustable range.J. Optical Soc. Amer. 54:1261–1266 (1964).Google Scholar
  6. Bliss, J.C. & H.D. Crane. Relative motion and nonlinear photocells in optical image processing. Optical and Electro-Optical Information Processing. M.I.T. Press, Boston (1965).Google Scholar
  7. Bliss, J.C. & H.D. Crane & B.D. King. Ranging instrument. U.S. Patent No. 3, 385, 159 (1968).Google Scholar
  8. Brodkey, J. & L. Stark. Accommodative convergence: an adaptive nonlinear control system.IEEE Trans. Systems, Science and Cybernetics, SSC- 3:121–133 (1967).Google Scholar
  9. Buchl, K. Focus detector as an aid for focusing a laser on a target.Appl. Optics 9:113–114 (1970).Google Scholar
  10. Campbell, F.W.. Accommodation reflexBrit. Orth. J. 11:13–17 (1954).Google Scholar
  11. Campbell, F.W. & G. Westheimer. Factor influencing accommodation responses of the human eye.J. Optical Soc. Amer. 49:568–571 (1959).Google Scholar
  12. Campbell, F.W. & G. Westheimer. Dynamics of accommodation responses of the human eye.J. Physiol. 151:285–295 (1960).PubMedGoogle Scholar
  13. Cornsweet, T.N. & H.D. Crane. Training the visual accommodation system.Vision Res. 13:713–715 (1973).PubMedGoogle Scholar
  14. Graig, D.R.. Image sharpness meter.Photographic Science and Engineering 5:337–342 (1961).Google Scholar
  15. Crane, H.C. & G.L. Pressman. Reciprocal optical system for measuring the state of focus of reflected images.J. Optical Soc. Amer. 58:1607–1615 (1968).Google Scholar
  16. Crane, H.D. A theoretical analysis of the visual accommodation system in human, NASA report NAS 2-2760, Stanford Res. Inst. (1966).Google Scholar
  17. Crane, H.D. & T.N. Cornsweet. Ocular-focus stimulator.J. Optical Soc. Amer. 60: (1970).Google Scholar
  18. Crawley, G. The canon autofocus.Br. J. Photography, 278–280 (1963).Google Scholar
  19. Davson, H. The Physiology of the Eye, Academic Press, New York, 3rd ed. (1972).Google Scholar
  20. Engel, G.R. Simulating accommodation by image autocorrelation.Amer. J. Optom. 49:496–503 (1972).Google Scholar
  21. Farbar, E. What's the story behind Nikon's auto-focusing lens.Modern Photograph: 48–53 (1971).Google Scholar
  22. Fincham, E.F. The mechanism of accommodation.Brit. J. Ophthal. Monograph, Supplement VIII (1937).Google Scholar
  23. Fincham, E.F. The accommodation reflex and its stimulus.Brit. J. Ophthal. 35:381–393 (1951).PubMedGoogle Scholar
  24. Fry, G.A. Blur of the retinal image. The Ohio State University Press, Columbus, Ohio (1955).Google Scholar
  25. Fujii, K., K. Kondo & T. Kasai. An analysis of the human eye accommodation system. Report of Osaka University, Japan (1969).Google Scholar
  26. Fujii, K. & T. Kasai. Image processing mechanism in human eye accommodation. Report of Osaka University, Japan (1969).Google Scholar
  27. Fujii, K. & T. Kawai. Image processing mechanism in human eye accommodation. Report of Osaka University, Japan (1969).Google Scholar
  28. Hand, A.J. The lens that focuses itself. Popular Science (1970).Google Scholar
  29. Heath, G.G. Components of accommodation.Amer. J. Optom. 13:569–579 (1956).Google Scholar
  30. Heath, G.G. The time course of night and space myopia. Aero Med. Res. Lab. report No. AMRL-TDR-62-80, Ohio (1962).Google Scholar
  31. Kallmann, H.E. Optar, a method of optical automatic ranging, as applied to a guidance device for the blind.Proc. of IRE: 1438–1446 (1954).Google Scholar
  32. Kasai, T., K. Kondo, M. Sekiguchi & K. Fujii. Influence of the depth of focus on the human eye accommodation. Technology Report of Osaka University, Japan, Vol. 20, No. 925 (1970).Google Scholar
  33. Marg, E. An investigation of voluntary as distinguished from reflex accommodation.Amer. J. Opt. andArch. Amer. Acad. Opt. 28: 347–356 (1956).Google Scholar
  34. Mellerio, J. Ocular refractions at low illuminations.Vision Res. 16:217–237 (1965).Google Scholar
  35. Morgan, M.W. Stimulus to and response of accommodation.Can. J. Optom. 30:71–78 (1968).Google Scholar
  36. Ogle, K.N. & J.T. Schwartz. Depth of focus of the human eye.J. Opt. Soc. Amer. 49:273–280 (1959).Google Scholar
  37. O'Neill, W.D. & L. Stark. Triple fuction ocular monitor.J. Opt. Soc. Am. 58:570–573 (1968).PubMedGoogle Scholar
  38. Oshima, S. Studies on the depth of focus of the eye.Jap. J. Ophthal. 2:63–72 (1958).Google Scholar
  39. Phillips, S.R., D. Shirachi & L. Stark. Analysis of accommodation response times using histogram information.Amer. J. Opt. 49:389–401 (1972).Google Scholar
  40. Phillips, S.R. Ocular neurological control systems: accommodation and the near response triad. Ph.D. dissertation, University of California, Berkeley (1974).Google Scholar
  41. Randle, R.J. Volitional control of visual accommodation. Advisory Group of Aerospace Res. and Dev. (AGARD), Cof. Prox. 82, Garmisch-Partenkirchen, Germany, September 15–17 (1970).Google Scholar
  42. Randle, R.J. & M.R. Murphy. The dynamic response of visual accommodation over a seven-day period.Am. J. Optom. & Physiol Optics 51:530–544 (1974).Google Scholar
  43. Shirachi, D. Nonlinear control of human visual accommodation. Ph.D. dissertation, University of California, Berkeley (1974).Google Scholar
  44. Smith, K.U. & W.M. Smith. Perception and Motion: An Analysis of Space-Structured Behavior. Saunders (1962).Google Scholar
  45. Smithline, L.M. Accommodative response to blur.J. Opt. Soc. Amer. 64:1512–1516 (1974).Google Scholar
  46. Stark, L. & Y. Takahashi. Absence of an odd-error signal mechanism in human accommodation. IEEE Trans. 138 (1965).Google Scholar
  47. Toates, F.M. Accommodation function of the human eye.Physiol. Rev. 52:828–863 (1972).PubMedGoogle Scholar
  48. Troelstra, A., B.L. Zuber, Miller & L. Stark. Accommodation tracking—a trial-anderror function.Vision Res. 4:585–599 (1964a).PubMedGoogle Scholar
  49. Troelstra, A., W.D. O'Neill & L. Stark. Vision during manned booster operation. NASA Report, N.A.S. 8-20381 (1964b).Google Scholar
  50. Whiteside, T.C.D. Problems of vision in aviation.Amer. J. Opt. 36:327–333 (1959).Google Scholar
  51. Whiteside, T.C.D. Vision in an empty field. Flying personnel research committee report, No. 854, R.A.F. Inst. Av. Med. (1953).Google Scholar
  52. Whitney, D.B. An automatic focusing device for ophthalmic lenses.Amer. J. Optom. 35.April (1958).Google Scholar
  53. Westheimer, G. The effect of spectacle lenses and accommodation on the depth of focus of the eye.Amer. J. Opt. 30:513–519 (1953).Google Scholar

Copyright information

© Dr. W. Junk Publishers 1977

Authors and Affiliations

  • Stephen Phillips
    • 1
    • 2
  • Lawrence Stark
    • 1
    • 2
  1. 1.Department of Mechanical Engineering of Physiological OpticsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations