Skip to main content
Log in

Effect of iron on growth and toxin production byClostridium botulinum type A

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The kinetics of growth and toxin production by the Hall strain ofClostridium botulinum type A was examined in the presence of various concentrations of iron (0.1 to 10.1 μg/ml, 1.8 to 182 μM) in a chemically defined medium. At concentrations below 0.5 μg/ml, iron insufficiency limited the growth of the organism. The maximum amount of toxin produced varied by only twofold (6×105 to 1.2×106 mouse median lethal doses/ml per A540 unit) over the 100-fold range of iron concentrations used. High concentrations of iron did not reduce the elaboration of botulinum toxin, in contrast with its marked inhibitory effects on the production of many bacterial toxins. Iron is unlikely to be a regulatory effector for the formation of botulinum toxin by the Hall strain of type A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Arnon, S. S. 1980. Infant botulism. Annual Review of Medicine31:541–560.

    PubMed  Google Scholar 

  2. Arnon, S. S., Midura, T. F., Clay, S. A., Wood, R. M., Chin, J. 1977. Infant botulism. epidemiological, clinical and laboratory aspects. Journal of the American Medical Association237:1946–1951.

    PubMed  Google Scholar 

  3. Bjorn, M. J., Iglewski, B. H., Ives, S. K., Sadoff, J. C., Vasil, M. L. 1978. Effect of iron on yields of exotoxin A in cultures ofPseudomonas aeruginosa PA-103. Infection and Immunity19:785–791.

    PubMed  Google Scholar 

  4. Bonventre, P. F., Kempe, L. L. 1960. Physiology of toxin production byClostridium botulinum types A and B. IV. Activation of the toxin. Journal of Bacteriology79:24–32.

    PubMed  Google Scholar 

  5. Casman, E. P. 1958. Serologic studies of staphylococcal enterotoxin. Public Health Reports73:599–609.

    PubMed  Google Scholar 

  6. Dubos, R. J., Geiger, J. W. 1946. Preparation and properties of Shiga toxin and toxoid. Journal of Experimental Medicine84:143–156.

    Google Scholar 

  7. Kindler, S. H., Mager, J., Grossowicz, N. 1956. Toxin production byClostridium parabotulinum type A. Journal of General Microbiology15:394–403.

    PubMed  Google Scholar 

  8. Mager, J., Kindler, S. H., Grossowicz, N. 1954. Nutritional studies withClostridium parabotulinum type A. Journal of General Microbiology10:130–141.

    PubMed  Google Scholar 

  9. Mueller, J. H. 1941. The influence of iron on the production of diphtheria toxin. Journal of Immunology42:343–351.

    Google Scholar 

  10. Mueller, J. H., Miller, P. A. 1940. Tetanus toxin production on a simplified medium. Proceedings of the Society for Experimental Biology and Medicine43:389–390.

    Google Scholar 

  11. Mueller, J. H., Miller, P. A. 1943. Large-scale production of tetanal toxin on a peptone-free medium. Journal of Immunology47:15–22.

    Google Scholar 

  12. Murata, R., Soda, S., Yamamoto, A., Ito, A. 1968. Further investigations on the influence of inorganic cations on growth and toxin production byClostridium perfringens PB6K. Japanese Journal of Medical Science and Biology21:55–70.

    PubMed  Google Scholar 

  13. Pappenheimer, A. M., Jr., Johnson, S. J. 1936. Studies in diphtheria toxin production. I. The effect of iron and copper. British Journal of Experimental Pathology17:335–341.

    Google Scholar 

  14. Reed, L. J., Muench, H. 1938. A simple method of estimating fifty per cent endpoints. American Journal of Hygiene27:493–497.

    Google Scholar 

  15. Schönheit, P., Brandis, A., Thauer, R. K. 1979. Ferredoxin degradation in growingClostridium pasteurianum during periods of iron deprivation. Archives of Microbiology120:73–76.

    PubMed  Google Scholar 

  16. Siegel, L. S., Metzger, J. F. 1979. Toxin production byClostridium botulinum type A under various fermentation conditions. Applied and Environmental Microbiology38:606–611.

    PubMed  Google Scholar 

  17. Tompkin, R. B., Christiansen, L. N., Shaparis, A. B. 1978. The effect of iron on botulinal inhibition in perishable canned cured meat. Journal of Food Technology13:521–527.

    Google Scholar 

  18. Tompkin, R. B., Christiansen, L. N., Shaparis, A. B. 1979. Iron and the antibotulinal efficacy of nitrite. Applied and Environmental Microbiology37:351–353.

    PubMed  Google Scholar 

  19. van Heyningen, W. E. 1955. The neurotoxin ofShigella shigae. 5. The effect of iron and related metals on the growth, respiration and toxin production ofShigella shigae and related organisms. British Journal of Experimental Pathology36:373–380.

    PubMed  Google Scholar 

  20. Weinberg, E. D. 1966. Roles of metallic ions in host-parasite interactions. Bacteriological Reviews30:136–151.

    PubMed  Google Scholar 

  21. Wentzel, L. M., Sterne, M. 1946. Effect of calcium on the production of botulinus D toxin. Nature158:446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, L.S. Effect of iron on growth and toxin production byClostridium botulinum type A. Current Microbiology 6, 127–130 (1981). https://doi.org/10.1007/BF01569017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569017

Keywords

Navigation