Skip to main content
Log in

Identification of the sulfur inclusion body inBeggiatoa alba B18LD by energy-dispersive X-ray microanalysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Dense inclusion bodies were observed under the STEM mode of a scanning electron microscope to occupy peripheral locations in air-dried filaments ofBeggiatoa alba B18LD, and they were determined by energy-dispersive x-ray microanalysis to consist almost entirely of sulfur. These inclusions conform in position and size (220–275 nm in diameter) to bodies seen in thin sections to be both membrane-bounded and enclosed within pockets penetrating the individual cell from the cytoplasmic membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Baxter, M., Jensen, T. 1980. A study of the methods forin situ x-ray energy dispersive analysis of polyphosphate bodies inPlectonema boryanum. Archives of Microbiology126:213–215.

    Google Scholar 

  2. Hageage, G. J., Eanes, E. D., Gherna, R. L. 1970. X-ray diffraction studies of the sulfur globules accumulated byChromatium species. Journal of Bateriology101:464–469.

    Google Scholar 

  3. Kran, G., Schlote, F. W., Schlegel, H. G. 1963. Cytologische Untersuchungen anChromatium okenii Perty. Naturwissenschaften50:728–730.

    Google Scholar 

  4. Kuypers, G. A. J., Roomans, G. M. 1979. Mercury-induced loss of K+ from yeast cells investigated by electron probe x-ray microanalysis. Journal of General Microbiology115:13–18.

    PubMed  Google Scholar 

  5. Lawry, N. H., Jensen, T. E. 1979. Deposition of condensed phosphate as an effect of varying sulfur deficiency in the cyanobacteriumSynechococcus sp. (Anacystis nidulans). Archives of Microbiology120:1–7.

    Google Scholar 

  6. Maier, S., Murray, R. G. E. 1965. The fine structure ofThioploca ingrica and a comparison withBeggiatoa. Canadian Journal of Microbiology11:645–655.

    PubMed  Google Scholar 

  7. Nicolson, G. L., Schmidt, G. L. 1971. Structure of theChromatium sulfur particle and its protein membrane. Journal of Bacteriology105:1142–1148.

    PubMed  Google Scholar 

  8. Schmidt, G. L., Kamen, M. D. 1970 Variable cellular composition ofChromatium in growing cultures. Archiv für Mikrobiologie73:1–8.

    Google Scholar 

  9. Schmidt, G. L., Nicolson, G. L., Kamen, M. D. 1971. Composition of the sulfur particle ofChromatium vinosum strain D. Journal of Bacteriology105:1137–1141.

    PubMed  Google Scholar 

  10. Strohl, W. R., Geffers, I., Larkin, J. M. 1981. Structure of the sulfur inclusion envelopes from four beggiatoas. Current Microbiology6:75–79.

    Google Scholar 

  11. Strohl, W. R., Howarl, K. S., Larkin, J. M. 1981. Ultrastructure ofBeggiatoa alba strain B15LD. Journal of General Microbiology, in press.

  12. Strohl, W. R., Larkin, J. M. 1978. Enumeration, isolation, and characterization ofBeggiatoa from freshwater sediments. Applied and Environmental Microbiology36:755–770.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawry, N.H., Jani, V. & Jensen, T.E. Identification of the sulfur inclusion body inBeggiatoa alba B18LD by energy-dispersive X-ray microanalysis. Current Microbiology 6, 71–74 (1981). https://doi.org/10.1007/BF01569006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569006

Keywords

Navigation