Skip to main content
Log in

n-Dodecane as a substrate for nitrogen fixation by an alkane-utilizingAzospirillum sp.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Azospirillum sp. ANK-BI-11 was isolated from petroliferous soil. Glucose, nutrient broth, and sugar acids showed better growth thann-alkanes under aerobic conditions. The utilization of glucose was inhibited in the presence ofn-hexane. Microaerobically, succinic acid, pyruvic acid, and lactic acid were the best C-sources for acetylene reduction, whereas glucose was the best source for growth.n-Dodecane, a nonconventional C-source, also showed good response towards acetylene reduction, although growth was not so pronounced here as with glucose but was equal to that of Na-succinate. Optimum pH and temperature for acetylene reduction were between 7.0 and 8.0 and 30°C, respectively. Scanning electron microscopic studies revealed structural alteration in the shapes and sizes of the cells ofAzospirillum sp. when grown onn-hexane andn-dodecane compared with the cells grown on glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Anthony C, Zatman LJ (1967) The microbial oxidation of methanol. Biochem J 104:960–969

    PubMed  Google Scholar 

  2. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    PubMed  Google Scholar 

  3. Berkum P Van, Bohlool BB (1980) Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol Rev. 44:491–517

    PubMed  Google Scholar 

  4. Bont JAM De, Mulder EG (1976) Invalidity of the acetylene reduction assay in alkane-utilizing nitrogen fixing bacteria. Appl Environ Microbiol 31:640–647

    PubMed  Google Scholar 

  5. Boulton CA, Ratledge C (1983) The physiology of hydrocarbon-utilizing microorganisms. In: Wiseman A (ed) Topics in enzyme and fermentation biotechnology 9. Chichester: Ellis Horwood Limited.

    Google Scholar 

  6. Bushnell LD, Hass HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653–672

    Google Scholar 

  7. Conn EE, Stumpf PK (1972) Outlines of biochemistry. New York: John Wiley, pp 404–407

    Google Scholar 

  8. Das A, Mishra AK (1983) Utilization of fructose byAzospirillum brasilense. Can J Microbiol 29:1213–1217

    Google Scholar 

  9. Davis JB (1952) Studies on soil samples from a “Paraffin dirt” bed. Bull Am Assoc Petroleum Geol 36:2186–2188

    Google Scholar 

  10. Davis JB, Coty VF, Stanley JP (1964) Atmospheric nitrogen fixation by methane oxidizing bacteria. J Bacteriol 88:468–472

    PubMed  Google Scholar 

  11. Dobereiner J, Day JM (1976) Association symbiosis in tropical grasses. Characterization of microorganisms and dinitrogen fixing sites. In: Newton WE, Nyman CJ (eds), Proceedings of the First International Symposium on Nitrogen Fixation, Pullman: Washington State University Press, pp 518–536

    Google Scholar 

  12. Foster JW, Davis RH (1966) A methane dependent coccus with notes on classification and nomencleature of obligate, methane-utilizing bacteria. J Bacteriol 91:1924–1931

    PubMed  Google Scholar 

  13. Gill CD, Ratledge C (1973) Inhibition of glucose assimilation and transport by n-decane and other n-alkanes inCandida 107. J Gen Microbiol 75:11–22

    PubMed  Google Scholar 

  14. Ginkel CG Van, Bont JAM De (1986) Isolation and characterization of alkane-utilizingXanthobacter spp. Arch Microbiol 145:403–407

    Google Scholar 

  15. Griffin WM, Traxler RW (1981) Some aspects of hydrocarbon metabolism by Pseudomonas. Dev Industr Microbiol 22:425–435

    Google Scholar 

  16. Harper HJ (1939) The effect of natural gas on the growth of microorganisms and the accumulation of nitrogen and organic matter in the soil. Soil Sci 78:461–466

    Google Scholar 

  17. Kaserer H (1906) Über die Oxydation des Wasserstoffes und des Methans durch Mikroorganismen. Zentr Bakteriol Parasitenk Abt. II 15:573–576

    Google Scholar 

  18. Miguez CB (1986) Lipopolysaccharide changes and cytoplasmic polyphosphate granule accumulation inPseudomonas aeruginosa during growth on hexadecane. Can J Microbiol 32:248–253

    PubMed  Google Scholar 

  19. Okon, Y, Albrecht SL, Burris RH (1976) Factors affecting growth and nitrogen fixation ofSpirillum lipoferum. J Bacteriol 127:1248–1254

    PubMed  Google Scholar 

  20. Okon Y, Houchins JP, Albrecht SL, Burris RH (1977) Growth ofSpirillum lipoferum at constant partial pressure of oxygen, and the properties of its nitrogenase in cell-free extracts. J Gen Microbiol 98:87–93

    PubMed  Google Scholar 

  21. Patel RN, Hou CT, Laskin AI, Felix A, Derelanko P (1983) Oxidation of alkanes by organisms grown on C2-C4 alkanes. J Appl Biochem 5:107–120

    Google Scholar 

  22. Patel RN, Hou CT, Laskin AI, Felix A, Derelanko P (1983) Epoxidation of n-alkanes by organisms grown on gaseous alkanes. J Appl Biochem 5:121–131

    Google Scholar 

  23. Postgate J (1978) Studies in biology, number 92: nitrogen fixation. 25 London: Edward Arnold Limited, pp 10–18

    Google Scholar 

  24. Postgate JR, Hill S (1979) In: Lynch JM, Poole NJ (eds) Microbial ecology, a conceptual approach. Oxford: Blackwell, pp 191–213

    Google Scholar 

  25. Ratledge C (1984) Microbial conversions of alkanes and fatty acids. J Am Chem Soc 61:447–453

    Google Scholar 

  26. Resnick NA, Mortimer RK (1966) Unsaturated fatty acid mutants ofSaccharomyces cerevisiae. J Bacteriol 92:597–600

    PubMed  Google Scholar 

  27. Schollenberger CJ (1930) Effect of leaking natural gas upon the soil. Soil Sci 29:261–266

    Google Scholar 

  28. Siporin C, Cooney JJ (1976) Inhibition of glucose metabolism by n-hexadecane inCladosporium resinae. J Bacteriol 128:235–241

    PubMed  Google Scholar 

  29. Sohngen NL (1906) Über Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Zentr Bakteriol Parasitenk Abt II 5:513–517

    Google Scholar 

  30. Stone RW, White AGC, Fenske MB (1940) Microorganisms attacking petroleum and petroleum fractions. J Bacteriol 39:91–92

    Google Scholar 

  31. Tauson VO (1929) The oxidation of benzene hydrocarbon by bacteria. Planta 7:735–757

    Google Scholar 

  32. Teh JS (1975) Glucose transport and its inhibition by short chain n-alkanes inCladosporium resinae. J Bacteriol 122:832–840

    PubMed  Google Scholar 

  33. Von Bulow JFW, Dobereiner J (1975) Potential for nitrogen fixation in maize genotypes in Brazil. Proc. Natl. Acad Sci USA 72:2389–2393

    Google Scholar 

  34. Walker JD, Coomy JJ (1973) Oxidation ofn-alkanes byCladosporium resinae. J Bacteriol 115:635–639

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, I., Shukla, S.K. & Mishra, A.K. n-Dodecane as a substrate for nitrogen fixation by an alkane-utilizingAzospirillum sp.. Current Microbiology 16, 303–309 (1988). https://doi.org/10.1007/BF01568536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01568536

Keywords

Navigation