Current Microbiology

, Volume 13, Issue 3, pp 171–175 | Cite as

Characterization ofβ-lactamase fromMycobacterium smegmatis SN2

  • Divaker Choubey
  • K. P. Gopinathan


β-Lactamase fromMycohacterium smegamatis SN2 was purified to homogeneity. The molecular weight of the enzyme was 30,000 and the isoelectric point was 4.1. The enzyme showed maximal activity at pH 6.5 and 56°C and resembled the plasmid-mediated TEM-type β-lactamases commonly encountered in gram-negative bacteria in substrate profile. The enzyme shared antigenic structure with β-lactamase fromMycobacterium butyricum ATCC 19979 andEscherichia coli HB101 (pBR322).


Enzyme Molecular Weight Maximal Activity Isoelectric Point Antigenic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Ambler RP (1980) The structure of β-lactamases. Philos Trans R Soc Lond [Biol] 289:321–331Google Scholar
  2. 2.
    Citri N, Pollock MR (1966) The biochemistry and function of β-lactamase (penicillinase). In: Nord FF (ed) Advances in enzymology, vol 28 New York: John Wiley Interscience, pp 237–323Google Scholar
  3. 3.
    Dale JW, Smith JT (1974) R-factor mediated β-lactamases that hydrolyze oxacillin: evidence for two distinct groups. J Bacteriol 119:351–356PubMedGoogle Scholar
  4. 4.
    Fairbanks G, Steck TL, Wallach DFG (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617PubMedGoogle Scholar
  5. 5.
    Hedges RW, Datta N, Kontomichalou P, Smith JT (1974) Molecular specificities of R-factor determined β-lactamases: correlation with plasmid compatibility. J Bacteriol 117:56–62PubMedGoogle Scholar
  6. 6.
    Kaneda S, Yabu K (1983) Purification and some properties of β-lactamase fromMycobacterium smegamatis. Microbiol Immunol 27:191–193PubMedGoogle Scholar
  7. 7.
    Karnik SS, Gopinathan KP (1983) Transfection ofMycobacterium smegmatis SN2 with mycobacteriophase 13 DNA. Arch Microbiol 136:275–280PubMedGoogle Scholar
  8. 8.
    Kasik JE (1979) Mycobacterial β-lactamases. In: Hamilton-Miller JMT, Smith JT (eds) ß-lactamases. London: Academic press, pp 339–350Google Scholar
  9. 9.
    Kasik JE, Peacham L (1968) Properties of β-lactamases produced by three species of mycobacteria. Biochem J 107:675–682Google Scholar
  10. 10.
    Kasik JE, Severson CD, Stearns NA, Thompson JS (1971) Immunological distinction of mycobacterial β-lactamases. J Lab Clin Med 78:982Google Scholar
  11. 11.
    Laemmli UK (1970) Cleavage of structural protiens during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedGoogle Scholar
  12. 12.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  13. 13.
    Matthew M, Harris AM (1976) Identification of β-lactamase by analystical isoelectric focussing: correlation with bacterial taxonomy. J Gen Microbiol 94:53–67Google Scholar
  14. 14.
    Muftic MK (1962) Isolation and purification of the penicillinase from mycobacteria. Experientia 18:17PubMedGoogle Scholar
  15. 15.
    Nossal NG, Heppel LA (1966) The release of enzyme by osmotic shock fromEscherichia coli in exponential phase. J Biol Chem 241:3055–3062PubMedGoogle Scholar
  16. 16.
    Novich RP (1962) Microiodometric assay for penicilinase. Biochem J 83:236–240PubMedGoogle Scholar
  17. 17.
    Pollock MR (1965) Purification and properties of penicillinase from two strains ofBacillus licheniformis: a chemical physiochemical and physiologica comparison. Biochem J 94:666–675PubMedGoogle Scholar
  18. 18.
    Richmond MH (1963) Purification and properties of the exopenicillinase fromStaphylococcus aureus. Biochem J 88:452–459PubMedGoogle Scholar
  19. 19.
    Richmond MH (1963) Immunological techniques for studying β-lactamases. In: Hash JH (ed) Methods in enzymology, vol 43. New York: Academic Press, pp 86–100Google Scholar
  20. 20.
    Richmond MH, Sykes RB (1973) The beta-lactamases of gram-negative bacteria and their possible physiological role. In: Rose AH, Tempest DW (eds) Advances in microbiol physiology, vol 9. New York: Academic Press, pp 31–88Google Scholar
  21. 21.
    Sawai T, Takahashi K, Yamagishi S, Mitsuhashi S (1970) Variants of penicillinase mediated by an R-factor inEscherichia coli. J Bacteriol 104:620–629PubMedGoogle Scholar
  22. 22.
    Smith SS, Braun R (1978) A new method for the purification of RNA polymerase II (or B) from the lower eukaryotePhysarum polycephalum. Eur J Biochem 82:309–320PubMedGoogle Scholar
  23. 23.
    Vaerman JP (1981) Single radial immunodiffusion. In: Langone JJ, Vunakis HV (eds) Methods in enzymology, vol 73B. New York: Academic Press, pp 291–305Google Scholar
  24. 24.
    Vecoli C, Prevost FE, Ververis JJ, Medeiros AA, O'Leary GP (1983) Comparison of polyacrylamide and agarose gel thin-layer isoelectric focussing for the characterization of β-lactamases. Antimicrob Agents Chemother 24:186–189PubMedGoogle Scholar
  25. 25.
    Weber K, Osborn M (1969) The reliability of molecular weight determination by dodecyl sulfate polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412PubMedGoogle Scholar
  26. 26.
    Yabu K, Ochai T, Kaneda S (1984) Penicillin-binding proteins inMycobacterium smegmatis. FEMS Microbiol Lett 25:307–310Google Scholar
  27. 27.
    Yamagishi S, O'Hara K, Sawai T, Mitsuhashi S (1969) The purification and properties of pencillin β-lactamases mediated by transmissible R-factor inEscherichia coli. J Biochem 66:11–20PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Divaker Choubey
    • 1
  • K. P. Gopinathan
    • 1
  1. 1.Microbiology and Cell Biology LaboratoryIndian Institue of ScienceBangaloreIndia

Personalised recommendations