Skip to main content
Log in

Investigation of mercaptans, organic sulfides, and inorganic sulfur compounds as sulfur sources for the growth of methanogenic bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A variety of compounds were investigated for use as sulfur sources for the growth of methanogenic bacteria.Methanococcus (Mc.) deltae, Mc. maripaludis, Methanobacterium (Mb.) speciesGC-2B, GC-3B, andMMY, Methanobrevibacter (Mbr.) ruminantium, andMethanosarcina (Ms.) barkeri strain 227 grew well with sulfide, So, thiosulfate, or cysteine as sole sulfur source.Mbr. ruminatium was able to grow on SO =4 or SO =3 , andMs. barkeri strain 227 was able to grow on SO =3 , but not on SO =4 as a sole sulfur source.Mc. jannaschii grew with sulfide, So, thiosulfate or SO =3 , but not on cysteine or SO =4 as sole surface source.Mc. thermolithotrophicus, Mc. jannaschii, Mc. deltae, andMb. thermoautotrophicum strains Marburg and ΔH were able to grow with methanethiol, ethanethiol,n-propanethiol,n-butanethiol, methyl sulfide, dimethyl sulfoxide, ethyl sulfide, or CS2 as a sulfur source, when very low levels (20–30 μM) of sulfide were present; no growth occurred on 5–100 μM sulfide alone. Methanethiol, ethanethiol, and methyl sulfide-using cultures produced sulfide during growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethane sulfonic acid (HS-COM)-dependent growth ofMethanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    PubMed  Google Scholar 

  2. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  Google Scholar 

  3. Banwart WL, Bremner JM (1974) Gas chromatographic identification of sulphur gasses in soil atmospheres. Soil Biol Biochem 6:113–115

    Google Scholar 

  4. Bhatnagar L, Henriquet M, Zeikus JG, Aubert JP (1984) Utilization of mercapto-2-ethanol as medium reductant for determination of the metabolic response of methanogens towards inorganic sulfur compounds. FEMS Microbiol Lett 22:155–158

    Google Scholar 

  5. Bhatnagar L, Jain MK, Aubert JP, Zeikus JG (1984) Comparison of assimilatory organic nitrogen, sulfur and carbon sources for growth ofMethanobacterium species. Appl Environ Microbiol 48:785–790

    Google Scholar 

  6. Bryant MP, Tzeng SF, Robinson IM, Joyner AE (1971) Nutrient requirements of methanogenic bacteria. Adv Chem Ser 105:23–40

    Google Scholar 

  7. Corder RE, Hook LA, Larkin JM, Frea JI (1983) Isolation and characterization of two new methane-producing cocci:Methanogenium olentangyi, sp. nov., andMethanococcus deltae, sp. nov. Arch Microbiol 134:28–32

    Google Scholar 

  8. Daniels L (1985) A protective device for use during autoclaving bottles of methanogen medium. ASM News 51:60–61

    Google Scholar 

  9. Daniels L, Belay N, Mukhopadahyay B (1984) Considerations for the use and large-scale growth of methanogenic bacteria. In: Scott CD (ed) Proceedings of the 6th symposium on biotechnology in fuelds and chemicals. Biotechnology and bioengineering symposium no. 14, New York: John Wiley and Sons, pp 199–213

    Google Scholar 

  10. Daniels L, Belay N, Rajagopal BS (1986) Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl Environ Microbiol 51:703–709

    PubMed  Google Scholar 

  11. Daniels, L, Sparling R, Sprott GD (1984) The bioenergetics of methanogenesis. Biochim Biophys Acta 768:113–163

    PubMed  Google Scholar 

  12. Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    PubMed  Google Scholar 

  13. Gunnarsson LAH, Rönnow PH (1982) Variation of the ATP-pool in thermophilic methanogenic bacteria during nitrogen or sulfur starvation. FEMS Microbiol Lett 14:317–320

    Google Scholar 

  14. Hook LA, Corder RE, Hamilton PT, Frea JI, Reeve JN (1984) Development of a plating system for genetic exchange studies using a modified low oxygen chamber. In Strohl I, Tuovinen OH (eds) Microbial chemoautotrophy. Columbus: Ohio State Press, pp 275–289

    Google Scholar 

  15. Huber J, Thomm M, Konig H, Thies G, Stetter KO (1982)Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50

    Google Scholar 

  16. Jones WJ, Whitman WB, Fields RD, Wolfe RS (1983) Growth and plating efficiency of methanococci on agar media. Appl Environ Microbiol 46:220–226

    Google Scholar 

  17. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983)Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Google Scholar 

  18. Jones WJ, Paynter MJB, Gupta R (1983) Characterization ofMethanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97

    Google Scholar 

  19. Kadota H, Ishida Y (1972) Production of volatile sulfur compounds by microorganisms. Ann Rev Microbiol 26:127–138

    Google Scholar 

  20. Lovelock JE, Maggs RJ, Rasmussen RA (1972) Atmospheric dimethyl sulfide and the natural sulfur cycle. Nature 237:452–453

    Google Scholar 

  21. Mah R, Smith MR, Baresi L (1978) Studies on an acetatefermenting strain ofMethanosarcina. Appl Environ Microbiol 35:1174–1184

    PubMed  Google Scholar 

  22. Mountfort DO, Asher RA (1979) Effect of inorganic sulfide on the growth and metabolism ofMethanosarcina barkeri strain DM. Appl Environ Microbiol 37:670–675

    PubMed  Google Scholar 

  23. Moura JJG, Moura I, Santos H, Xavier AV, Scandellari M, LeGall J (1982) Isolation of P590 fromMethanosarcina barkeri: evidence for the presence of sulfite reductase activity. Biochem Biophys Res Commun 108:1002–1009

    PubMed  Google Scholar 

  24. Murray PA, Zinder SH (1984) Nitrogen fixation by a methanogenic archaebacterium. Nature 312:284–286

    Google Scholar 

  25. Patel GB, Roth LA, Van den Berg L, Clark DS (1976) Characterization of a strain ofMethanospirillum hungatei. Can J Microbiol 22:1404–1410

    PubMed  Google Scholar 

  26. Ronnow PH, Gunnarsson LAH (1981) Sulfide-dependent methane production and growth of a thermophilic methanogenic bacterium. Appl Environ Microbiol 42:580–584

    Google Scholar 

  27. Rönnow PH, Gunnarsson LAH (1982) Response of growth and methane production to limiting amounts of sulfide and ammonia in two thermophilic methanogenic bacteria. FEMS Microbiol Lett 14:311–315

    Google Scholar 

  28. Scherer P, Sahm H (1981) Influence of sulphur-containing compounds on the growth ofMethanosarcina barkeri in a defined medium. Eur J Appl Microbiol Biotechnol 12:28–35

    Google Scholar 

  29. Sivelä S, Sundman V (1975) Demonstration ofThiobacillus-type bacteria which utilize methyl sulphides. Arch Microbiol 103:303–304

    Google Scholar 

  30. Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305:309–311

    Google Scholar 

  31. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bact Rev 41:100–180

    PubMed  Google Scholar 

  32. Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells ofChromatium okenii. Antonie Van Leeuwenhoek J Microbiol Serol 30:225–238

    Google Scholar 

  33. Tsibul'skii VV, Vitenberg AG, Khripun IA (1978) Application of equilibrium concentrating in the gas-chromatographic determination of trace impurities of unstable sulfur-containing compounds in gases. J Anal Chem (USSR) 33:921–925

    Google Scholar 

  34. Weast RC (ed) (1968) Handbook of chemistry and physics, 49th edn. Cleveland: CRC Press

    Google Scholar 

  35. Wellinger A, Wuhrmann K (1977) Influence of sulfide compounds on the metabolism ofMethanobacterium strain A2. Arch Microbiol 115:13–17

    PubMed  Google Scholar 

  36. Whitman WB (1985) Methanogenic bacteria: In: Woese CR, Wolfe RS (eds) The bacteria, vol 8: archaebacteria. Orlando FL: Academic Press, pp 3–84

    Google Scholar 

  37. Whitman WB, Ankwanda E, Wolfe RS (1982) Nutrition and carbon metabolism ofMethanococcus voltae. J Bacteriol 149:852–863

    PubMed  Google Scholar 

  38. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    PubMed  Google Scholar 

  39. Zeikus JG, Wolfe RS (1972)Methanobacterium thermoautotrophicum, sp. nov., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    PubMed  Google Scholar 

  40. Zillig W, Holz I, Janekovic D, Schäfer W, Reiter WD (1983) The archaebacteriumThermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94

    Google Scholar 

  41. Zillig W, Stetter KO, Prangishvilli D, Schäfer W, Wunderl S, Janekovic D, Holz I, Palm P (1982)Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zbl Bakteriol Hyg I [Abt Orig C] 3:304–317

    Google Scholar 

  42. Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981)Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from icelandic solfataras. Zbl Bakteriol Hyg I [Abt Orig C] 2:205–227

    Google Scholar 

  43. Zinder SH, Brock TD (1978) Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Appl Environ Microbiol 35:344–352

    Google Scholar 

  44. Zinder SH, Brock TD (1978) Production of methane and carbon dioxide from methanethiol and dimethyl sulfide by anaerobic lake sediments. Nature 273:226–228

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopal, B.S., Daniels, L. Investigation of mercaptans, organic sulfides, and inorganic sulfur compounds as sulfur sources for the growth of methanogenic bacteria. Current Microbiology 14, 137–144 (1986). https://doi.org/10.1007/BF01568365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01568365

Keywords

Navigation