Advertisement

Applied Physics A

, Volume 63, Issue 3, pp 227–235 | Cite as

Positron diffusion in solids and the reconstruction of inhomogeneous defect distributions from lifetime measurements

  • G. Kögel
Invited Paper

Abstract

The time dependent diffusion trapping equations for positrons implanted into inhomogeneous solids are analyzed. This problem is of central importance in the study of polycrystalline materials and for the application of pulsed positron beams to defect studies in materials research. The main problem in previous investigations was the necessity to solve the time-dependent diffusion equation. It prevented analytical treatment in all but the simplest applications. For the first time this difficulty is eliminated by invoking a new concept, the observable local annihilation characteristics for local implantation of positrons into the thermalized ensemble. It will be shown that the local annihilation characteristics are governed by field equations which reduce to the well known quantities of the standard trapping model in the case of homogeneous defect distributions. Furthermore, inhomogeneous defect distributions are uniquely determined from the field equations provided the local annihilation characteristics are known. Analytical solutions are derived and applied successfully to recent experimental results for a selection of simple, but realistic problems. The formal procedure includes internal drift fields and could be extended to cover also the epithermal period of positron thermalization, if necessary.

PACS

78.70 66.30 61.70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Triftshäuser: in Microscopic Methods in Metals, U. Gonser (ed.), Springer, Berlin 1986, p. 249Google Scholar
  2. 2.
    W. Brandt: in Positron Annihilation, A.T. Steward, L.O. Roellig (eds.), Academic, New York 1967, p. 155Google Scholar
  3. 3.
    P. Willutzki, J. Störmer, G. Kögel, P. Sperr, D.T. Britton, R. Steindl, W. Triftshäuser; Mat. Science Forum175-178, 237 (1995).Google Scholar
  4. 4.
    R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazadei, T. Tomimasu; J. Appl. Phys.30, L532 (1991)Google Scholar
  5. 5.
    W. Frank, A. Seeger: Appl. Phys.3, 61 (1974)Google Scholar
  6. 6.
    A. Seeger: Appl. Phys.4, 183 (1974)Google Scholar
  7. 7.
    R.M. Nieminen, J. Laakkonen, P. Hautojärvi, A. Vehanen: Phys. Rev.B19, 1397 (1979)Google Scholar
  8. 8.
    W.E. Frieze, K.G. Lynn, D.O. Welch: Phys. Rev.B31,15 (1985)Google Scholar
  9. 9.
    D.T. Britton: J. Phys.: Condens. Mater3. 681 (1991)Google Scholar
  10. 10.
    G. Kögel: Mat. Science Forum175-178 107 (1995)Google Scholar
  11. 11.
    R. Würschum, A. Seeger: Phil. Mag. A,73, 1489 (1996)Google Scholar
  12. 12.
    P.J. Schultz, K.G. Lynn: Rev. Mod. Phys.60, 701 (1988)Google Scholar
  13. 13.
    A. van Veen, H. Schut, M. Clement, J.M.M. de Nijs, A. Kruseman, M.R. Ijpma: Applied Surface Science85, 216 (1995)Google Scholar
  14. 14.
    L.V. Jorgensen, J.P. Merrison, B.I. Deutsch, M. Charlton, G.O. Jones; Phys. Rev.B52 12402 (1995)Google Scholar
  15. 15.
    T. McMullen, H.J. Stott: Phys. Rev.B34, 8985 (1986)Google Scholar
  16. 16.
    K.O. Jensen, A.B. Walker: in Positron at Metallic Surfaces, A. Ishii (ed.), Trans Tech. Publications, Aedermannsdorf, 1993, p. 293Google Scholar
  17. 17.
    A. Goodyear, A.P. Knights, N. Overton, P.G. Coleman; Materials Science Forum175-178, 161 (1995)Google Scholar
  18. 18.
    Y. Kong, K.G. Lynn: Phys. Rev.B41, 6179 (1990)Google Scholar
  19. 19.
    A. Dupasquier, R. Romero, A. Somoza: Phys. Rev.B48, 9235 (1993)Google Scholar
  20. 20.
    A. Dupasquier; private communication (1996)Google Scholar
  21. 21.
    G. Kögel; in Position Annihilation, L. Dorikens, M. Dorikens, D. Segers (eds.), World Scientific, 1989, p. 52Google Scholar
  22. 22.
    J. Jian, X.Z. Zhou, J. Zhu, C.W. Lung: Materials Science Forum175-178 395 (1995)Google Scholar
  23. 23.
    P.M. Morse, H. Feshback; Methods of Theoretical Physics, McGraw Hill 1953, p. 791Google Scholar
  24. 24.
    K. Uhlmann, W. Triftshäuser, G. Kögel, P. Sperr, D.T. Britton, A. Zecca, R.S. Brusa, G. Karwasz, Fresenius J: Anal. Chem.353, 594 (1995)Google Scholar
  25. 25.
    V.J. Gosh: Applied Surface Science85, 187 (1995)Google Scholar
  26. 26.
    G. Kögel: Mat. Science Forum175-178, 185 (1995)Google Scholar
  27. 27.
    J. Störmer: Thesis, Universität der Bundeswehr München, 1995 (unpublished)Google Scholar
  28. 28.
    A. Soininen, J. Mäkinen, D. Beyer, P. Hautojärvi: Phys. Rev.B46, 13104 (1992)Google Scholar
  29. 29.
    W. Pahl, V. Gröger, G. Krexner, A. Dupasquier: J. Phys.: Condens. Matter7, 5939 (1995)Google Scholar
  30. 30.
    F. Natterer: The Mathematics of Computerized Tomography, Wiley, 1986Google Scholar
  31. 31.
    J. Radon: Berichte Sächsische Akademie der Wissenschaften, Leipzig, Math.-Phys. Kl.,69, 267 (1917)Google Scholar
  32. 32.
    A.N. Drozdov: PhysicaA196, 283 (1993)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • G. Kögel
    • 1
  1. 1.Institut für Nukleare FestkörperphysikUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations