Skip to main content
Log in

Hyperinduction of enzymes of the phosphorylative pathway of glucose dissimilation inPseudomonas cepacia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Glucose-dehydrogenase-deficient (Gcd) strains ofPseudomonas cepacia 249 compensated for loss of operation of the direct oxidative pathway by expanding the phosphorylative pathway. When grown on glucose, they had between two- and fourfold higher than normal levels of glucokinase and NAD-linked glucose-6-phosphate dehydrogenase activity and a comparable increase in capacity to transport glucose. Similar expansion of the phosphorylative pathway was noted when the wild type was grown on cellobiose or trehalose. Gcd strains grew normally on cellobiose and trehalose, but not if also deficient in glucokinase; this indicates that the disaccharides were converted to glucose and metabolized via the phosphorylative pathway. The expansion of the phosphorylative pathway during growth of the wild type on disaccharides or of Gcd mutants on glucose was a consequence of hyperinduction of pathway enzymes. Other compounds that promoted such hyperinduction included aromatic conjugates of glucose such as arbutin and salicin, and mannose. Under conditions leading to expansion of the phosphorylative pathway, enzymes related to the direct oxidative pathway, such as gluconate dehydrogenase and the 6-phosphogluconate dehydrogenase active with NAD, were not formed. The results indicate that intracellular glucose and extracellular glucose are metabolized to 6-phosphogluconate via different routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Allenza, P., Lee, Y. N., Lessie, T. G. 1982. Enzymes related to fructose utilization inPseudomonas cepacia. Journal of Bacteriology150:1348–1356.

    Google Scholar 

  2. Allenza, P., Lessie, T. G. 1982.Pseudomonas cepacia mutants blocked in the Entner-Duodoroff pathway. Journal of Bacteriology150:1340–1347.

    Google Scholar 

  3. Berka, T. R., Lessie, T. G. 1984. Enzymes related to galactose utilization inPseudomonas cepacia. Current Microbiology11:43–48.

    Google Scholar 

  4. Cacciapuoti, A. F., Lessie, T. G. 1977. Characterization of the fatty acid sensitive glucose-6-phosphate dehydrogenase fromPseudomonas cepacia. Journal of Bacteriology132:555–563.

    Google Scholar 

  5. Campbell, J. J. R., Hogg, L. A., Strasdine, G. A. 1962. Enzyme distribution inPseudomonas aeruginosa. Journal of Bacteriology83:1155–1160.

    Google Scholar 

  6. Eisenberg, R. C., Butters, S. J., Quay, S. C., Friedman, S. B. 1974. Glucose uptake and phosphorylation inPseudomonas fluorescens. Journal of Bacteriology120:147–153.

    Google Scholar 

  7. Frampton, E. W., Wood, W. A. 1961. Carbohydrate oxidation byPseudomonas fluorescens. VI. Conversion of 2-keto-6-phosphogluconate to pyruvate. Journal of Biological Chemistry236:2571–2577.

    Google Scholar 

  8. Hunt, J. C., Phibbs, P. V., Jr. 1983. Regulation of alternate pathways of glucose catabolism during aerobic and anaerobic growth ofPseudomonas aeruginosa. Journal of Bacteriology.154:793–802.

    Google Scholar 

  9. Hyvarinen, A., Nikkila, A. 1962. Specific determination of blood glucose witho-toluidine. Clinica Chemica Acta.7:140–143.

    Google Scholar 

  10. Lee, Y. N., Lessie, T. G. 1974. Purification and characterization of the two 6-phosphogluconate dehydrogenase species fromPseudomonas multivorans. Journal of Bacteriology120:1043–1057.

    Google Scholar 

  11. Lessie, T. G., Berka, T., Zamanigian, S. 1979.Pseudomonas cepacia mutants blocked in the direct oxidative pathway of glucose degradation. Journal of Bacteriology139:323–325.

    Google Scholar 

  12. Lessie, T. G., Neidhardt, F. C. 1967. Adenosine triphosphatelinked control ofPseudomonas aeruginosa glucose-6-phosphate dehydrogenase. Journal of Bacteriology93:1337–1345.

    Google Scholar 

  13. Lessie, T. G., Vander Wyk, J. C. 1972. Multiple forms ofPseudomonas multivorans glucose-6-phosphate dehydrogenases: differences in size, pyridine nucleotide specificity, and susceptibility to inhibition by adenosine 5-triphosphate. Journal of Bacteriology110:1107–1117.

    Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193:265–275.

    Google Scholar 

  15. Matsushita, K., Ameyama, M. 1982. D-glucose dehydrogenase fromPseudomonas fluorescens, membrane-bound. Methods in Enzymology89:149–154.

    Google Scholar 

  16. Matsushita, K., Shinagawa, E., Ameyama, M. 1982. D-gluconate dehydrogenase from bacteria, 2-keto-D-gluconate-yielding, membrane-bound. Methods in Enzymology89:187–193.

    Google Scholar 

  17. Midgley, M., Dawes, E. A. 1973. The regulation of transport of glucose and methyl-glucoside inPseudomonas aeruginosa. Biochemical Journal132:141–154.

    Google Scholar 

  18. Mitchell, C. G., Dawes, E. A. 1982. The role of oxygen in the regulation of glucose catabolism, transport, and the tricarboxylic acid cycle inPseudomonas aeruginosa. Journal of General Microbiology128:49–56.

    Google Scholar 

  19. Nandassa, H. G., Andreesen, M., Schlegel, H. G. 1974. The utilization of 2-ketogluconate byHydrogenomonas eutropha. Archives of Microbiology103:71–76.

    Google Scholar 

  20. Narrod, S. A., Wood, W. A. 1956. Carbohydrate utilization byPseudomonas fluorescens: evidence for gluconokinase and 2-ketogluconokinase. Journal of Biological Chemistry.220:45–55.

    Google Scholar 

  21. O'Brien, R. W. 1975. Enzymatic analysis of pathways of glucose catabolism inPseudomonas citronellolis. Archives of Microbiology103:71–76.

    Google Scholar 

  22. Palleroni, N. J., Doudoroff, M. 1972. Some properties and taxonomic subdivisions of the genusPseudomonas. Annual Review of Phytopathology10:73–100.

    Google Scholar 

  23. Quay, S. C., Friedman, S. B., Eisenberg, R. C. 1972. Gluconate regulation of glucose catabolism inPseudomonas fluorescens. Journal of Bacteriology112:291–298.

    Google Scholar 

  24. Roberts, B. K., Midgley, M., Dawes, E. A. 1973. The metabolism of 2-oxogluconate byPseudomonas aeruginosa. Journal of General Microbiology78:319–329.

    Google Scholar 

  25. Stanier, R. Y., Palleroni, N. J., Doudoroff, M. 1966. The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology43:159–271.

    Google Scholar 

  26. Tiwari, N. P., Campbell, J. J. R. 1969. Enzymatic control of metabolic activity ofPseudomonas aeruginosa. Biochimica et Biophysica Acta193:395–401.

    Google Scholar 

  27. Vander Wyk, J. C., Lessie, T. G. 1974. Purification and characterization of thePseudomonas multivorans glucose-6-phosphate dehydrogenase active with nicotinamide adenine dinucleotide. Journal of Bacteriology120:1033–1042.

    Google Scholar 

  28. Vincente, M., Canovas, J. L. 1973. Glucolysis inPseudomonas putida—physiological role of alternative routes from the analysis of defective mutants. Journal of Bacteriology116:908–914.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berka, T.R., Allenza, P. & Lessie, T.G. Hyperinduction of enzymes of the phosphorylative pathway of glucose dissimilation inPseudomonas cepacia . Current Microbiology 11, 143–148 (1984). https://doi.org/10.1007/BF01567339

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01567339

Keywords

Navigation