Skip to main content
Log in

Fatty acid positional distribution in phospholipids of a psychrophilic bacterium during changes in growth temperature

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The major phospholipids of the psychrophilic bacteriumMicrococcus cryophilus, phosphatidylethanolamine and phosphatidylglycerol, have similar fatty acid compositions, comprising almost entirely palmitoleic and oleic acids. We show that there is a preference for the longer chains in thesn-1 position of both phosphatidylethanolamine and phosphatidylglycerol, both during isothermal growth and after temperature shifts, despite the fact that the overall phospholipid C18/C16 acyl chain ratio decreases with a lowering of growth temperature. Although it has been shown using model systems that the isomeric configurationsn-1-long,sn-2-short lowers lipid melting temperature, this paper reports the first clear-cut demonstration of such an isomeric preference in a natural system. We discuss how this acyl chain configuration contributes to membrane fluidity inM. cryophilus, in terms of adaptation to its psychrophilic habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Baldassare, J. J., Rhinehart, K. B., Silbert, D. F. 1976. Modification of membrane lipid: physical properties in relation to fatty acid structure. Biochemistry15:2986–2994.

    PubMed  Google Scholar 

  2. Baldassare, J. J., Brenckle, G. M., Hoffman, M., Silbert, D. F. 1977. Modification of membrane lipid: functional properties of membrane lipid in relation to fatty acid structure. Journal of Biological Chemistry252:8797–8803.

    PubMed  Google Scholar 

  3. Bartlett, G. R. 1959. Phosphorus assay in column chromatography. Journal of Biological Chemistry234:466–468.

    PubMed  Google Scholar 

  4. Christie, W. W. 1973. Lipid analysis. Isolation, separation, identification and structural analysis of lipids. Oxford: Pergamon.

    Google Scholar 

  5. Davis, P. J., Fleming, B. D., Coolbear, K. P., Keough, K. M. W. 1981. Gel to liquid-crystalline transition temperatures of water dispersions of two pairs of positional isomers of unsaturated mixed-acid phosphatidylcholines. Biochemistry20:3633–3636.

    PubMed  Google Scholar 

  6. Dickens, B. F., Thompson, Jr., G. A. 1982. Phospholipid molecular species alterations in microsomal membranes as an initial key step during cellular acclimation to low temperature. Biochemistry21:3604–3611.

    PubMed  Google Scholar 

  7. Foot, M., Jeffcoat, R., Barratt, M. D., Russell, N. J. 1983. The effect of growth temperature on the membrane lipid environment of the psychrophilic bacteriumMicrococcus cryophilus. Archives of Biochemistry and Biophysics224:718–727.

    PubMed  Google Scholar 

  8. Goldfine, H. 1972. Comparative aspects of bacterial lipids. Advances in Microbial Physiology8:1–58.

    PubMed  Google Scholar 

  9. Herbert, R. A. 1981. Low temperature adaptation in bacteria, pp. 41–53. In: Morris, G. J., Clarke, A. (eds.), Effects of low temperatures on biological membranes. London: Academic.

    Google Scholar 

  10. Keough, K. M. W., Davis, P. J. 1979. Gel to liquid-crystalline phase transitions in water dispersions of saturated mixed-acid phosphatidylcholines. Biochemistry18:1453–1459.

    PubMed  Google Scholar 

  11. Melchior, D. L. 1982. Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Current Topics in Membranes and Transport17:263–316.

    Google Scholar 

  12. Nishihara, M., Ishinaga, M., Kato, M., Kito, M. 1976. Temperature-sensitive formation of the phospholipid molecular species inEscherichia coli membranes. Biochimica et Biophysica Acta431:54–61.

    PubMed  Google Scholar 

  13. Raetz, C. R. H. 1978. Enzymology, genetics and regulation of membrane phospholipid synthesis inEscherichia coli. Microbiological Reviews42:614–659.

    PubMed  Google Scholar 

  14. Russell, N. J. 1971. Alteration in fatty acid chain length inMicrococcus cryophilus grown at different temperatures. Biochimica et Biophysica Acta231:254–256.

    PubMed  Google Scholar 

  15. Russell, N. J. 1974. The lipid composition of the psychrophilic bacteriumMicrococcus cryophilus. Journal of General Microbiology80:217–225.

    PubMed  Google Scholar 

  16. Russell, N. J. 1983. Adaptation to temperature in bacterial membranes. Biochemical Society (UK) Transactions11:333–335.

    Google Scholar 

  17. Russell, N. J. 1983. The regulation of membrane fluidity in bacteria by acyl chain length changes. Biomembranes, in press.

  18. Russell, N. J., Sandercock, S. P. 1980. The regulation of bacterial membrane fluidity by modification of phospholipid fatty acyl chain length, pp. 181–190. In: Kates, M., Kuksis, A. (eds.), Membrane fluidity: biophysical techniques and cellular regulation. Clifton, NJ: Humana.

    Google Scholar 

  19. Russell, N. J., Volkman, J. K. 1980. The effect of growth temperature on wax ester composition in the psychrophilic bacteriumMicrococcus cryophilus ATCC 15174. Journal of General Microbiology118:131–141.

    Google Scholar 

  20. Sandercock, S. P., Russell, N. J. 1980. The elongation of exogenous fatty acids and the control of phospholipid acyl chain length inMicrococcus cryophilus. Biochemical Journal188:585–592.

    PubMed  Google Scholar 

  21. Seelig, J., Seelig, A. 1980. Lipid conformation in model membranes and biological membranes. Quarterly Reviews of Biophysics13:19–61.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGibbon, L., Russell, N.J. Fatty acid positional distribution in phospholipids of a psychrophilic bacterium during changes in growth temperature. Current Microbiology 9, 241–244 (1983). https://doi.org/10.1007/BF01567194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01567194

Keywords

Navigation