Skip to main content
Log in

Physiological characterization ofPseudomonas pseudoflava GA3

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas pseudoflava GA3, an aerobic hydrogen-oxidizing bacterium, was characterized physiologically. The doubling time of autotrophically growing cells was 2.5 h for cells growing heterotrophically on sucrose it was 1.5 h; and for cells growing heterotrophically on fructose, succinate, lactate, glutamate, treahalose, glucose, and pyruvate it was about 1.6 h. Glucose and fructose were degraded via the Entner-Doudoroff pathway. 6-Phosphogluconate dehydrogenases (NAD or NADP-dependent) were not detected. Hydrogen did not suppress or inhibit the utilization of organic substrates. The specific hydrogenase activity was influenced by the growth conditions. An oxygen concentration of 20% (vol/vol) in the gas atmosphere provided conditions for continued exponential growth but diminished the specific hydrogenase activity. Cells contained a single membrane-bound hydrogenase; intact membranes were able to reduce menadion, ubiquinone Q10, methylene blue, phenazine methosulfate, and dichlorophenolindophenol. The hydrogenase was solubilized from the membrane fraction by treatment with 0.2% Triton X-100 and 10% sucrose, resulting in a yield of about 60% of total activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Aggag, M., Schlegel, H. G. 1973. Studies on a Gram-positive hydrogen bacterium,Nocardia opaca strain 1b. Description and physiological characterization. Archiv für Mikrobiologie88:299–318.

    Google Scholar 

  2. Auling, G., Reh, M., Lee, C. M., Schlegel, H. G. 1978.Pseudomonas pseudoflava, a new species of hydrogen-oxidizing bacteria: Its differentiation fromPseudomonas flava and other yellow-pigmented, Gram-negative, hydrogen-oxidizing species. International Journal of Systematic Bacteriology28:82–95.

    Google Scholar 

  3. Blackkolb, F., Schlegel, H. G. 1968. Katabolische Repression und Enzymhemmung durch molekularen Wasserstoff beiHydrogenomonas. Archiv für Mikrobiologie62:129–143.

    Google Scholar 

  4. Bowien, B., Schlegel, H. G. 1972. Der Biosyntheseweg der RNS-Ribose inHydrogenomonas eutropha Stamm H16 undPseudomonas facilis. Archiv für Mikrobiologie85:95–112.

    Google Scholar 

  5. Bowien, B., Schlegel, H. G. 1981. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annual Review of Microbiology35, in press.

  6. Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities for protein utilizing the principle of protein-dye binding. Analytical Biochemistry72:248–254.

    Google Scholar 

  7. Gottschalk, G. 1965. Die Verwertung organischer Substrate durchHydrogenomonas in Gegenwart von molekularem Wasserstoff. Biochemische Zeitschrift341:260–270.

    Google Scholar 

  8. Groves, W. E., Calder, J., Rutter, W. J. 1966. Fructose diphosphate aldolase II.Clostridium perfringens, pp. 487–491. In: Colowick, S. P., Kaplan, N. O. (eds.), Methods in enzymology, vol. 9. New York: Academic Press.

    Google Scholar 

  9. Hanus, F. J., Maier, R. J., Evans, H. J. 1979. Autotrophic growth of H2-uptake-positive strains ofRhizobium japonicum in an atmosphere supplied with hydrogen gas. Proceedings of the National Academy of Sciences of the United States of America76:1788–1792.

    Google Scholar 

  10. Kluyver, A. J., Manten, A. 1942. Some observations on the metabolism of bacteria, oxidizing molecular hydrogen. Antonie van Leeuwenhoek Journal of Microbiology and Serology8:71–85.

    Google Scholar 

  11. Lee, C. M. 1978. Solubilization of membrane-bound hydrogenase ofPseudomonas pseudoflava, pp. 281–286. In: Schlegel, H. G., Schneider, K. (eds.) Hydrogenases: Their catalytic activity, structure and function. Göttingen Goltze.

    Google Scholar 

  12. Malik, K. A., Schlegel, H. G. 1981. Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiology Letters, in press.

  13. Malik, K. A., Jung, C., Claus, D., Schlegel, H. G. 1981. Nitrogen fixation by the hydrogen-oxidizing bacteriumAlcaligenes latus. Archives of Microbiology,129:254–256.

    Google Scholar 

  14. Pedrosa, F. O., Döbereiner, J., Yates, M. G. 1980. Hydrogendependent growth and autotrophic carbon dioxide fixation inDerxia. Journal of General Microbiology119:547–551.

    Google Scholar 

  15. Pfennig, N., Lippert, K. D. 1966. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv für Mikrobiologie55:245–256.

    Google Scholar 

  16. Schink, B., Schlegel, H. G. 1978. Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria. Biochimie60:297–305.

    Google Scholar 

  17. Schlegel, H. G., Kaltwasser, H., Gottschalk, G. 1961. Ein Submersverfahren zur Kultur, wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Archiv für Mikrobiologie38:209–222.

    Google Scholar 

  18. Schmidt, K., Liaaen-Jensen, S., Schlegel, H. G. 1963. Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid vonChromatium okenii Perty. Archiv für Mikrobiologie46:117–126.

    Google Scholar 

  19. Schneider, K., Schlegel, H. G. 1977. Localization and stability of hydrogenases from aerobic hydrogen bacteria. Archives of Microbiology112:229–238.

    Google Scholar 

  20. Weiss, A. R., Schneider, K., Schlegel, H. G. 1980. Purification and properties of the membrane-bound hydrogenase ofPseudomonas pseudoflava GA3. Current Microbiology3:317–320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.M., Schlegel, H.G. Physiological characterization ofPseudomonas pseudoflava GA3. Current Microbiology 5, 333–337 (1981). https://doi.org/10.1007/BF01566744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01566744

Keywords

Navigation