Skip to main content
Log in

Biaxial stress effects on the elastic-plastic crack-tip displacement fields

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Viene presentato uno studio agli elementi finiti con un approccio allo strato limite del caricamento monotono seconda il Modo I di una fessura stazionaria in condizioni di stato di tensione piana e plasticità contenuta. Viene esaminata in particolare l'influenza che la componente tensionale elastica trasversale nonsingolare (i.e. T-stress) delle condizioni al contorno ha sullo stato di sollecitazione elasto-plastica all'apice della fessura. Si osserva che questo parametro dello stato di biassialità all'apice di fessure controlla sia l'estensione della zona plastica che lo stato deformativo al suo interno. Le soluzioni numeriche vengono inoltre impiegate per simulare sistemi di frange moirè interferometriche fornendo così un utile strumento di confronto con precedenti risultati sperimentali.

Summary

A plane stress, finite element analysis of the monotonic loading of a Mode I stationary crack under small scale yielding using a boundary layer approach is presented. A small-strain,J 2 plasticity theory is used in conjunction with a linear hardening material model. The effects due to the inclusion of the non-singular elastic T-stress in the asymptotic boundary conditions on the elastic-plastic fields near the tip are investigated. This parameter, which accounts for the inherent biaxial stress state at a crack tip, is found to control extension and state of deformation of the plastic zone. The full-field numerical solutions are also used to simulate moirè interferometric fringe patterns in order to assess earlier detailed experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kanninen M.F., Popelar C.H.,Advanced Fracture Mechanics, Oxford University Press, New York, 1985.

    Google Scholar 

  2. Rice J.R., “Mathematical Analysis of the Mechanics of Fracture”, in Liebowitz H. (ed)Fracture — An Advanced Treatise. Vol. II, Academic Press, 1968, pp. 191–311.

  3. Rice J.R., “Mechanics of Crack Tip Deformation and Extension by Fatigue”, inFatigue Crack Propagation, ASTM STP 415, Am. Soc. for Test. and Matls., Philadelphia, 1967, pp. 247–311.

    Google Scholar 

  4. Gangloff R.P., Ritchie R.O., “Environmental Effects novel to the Propagation of Short Fatigue Cracks”, in Bilby B.A., Miller K.J. and Willis J.R. (eds.),Fundamental of Deformation and Fracture, Cambridge University Press, Cambridge, 1985, pp. 529–558.

    Google Scholar 

  5. Nicoletto G., “Fatigue Crack Tip Strains in 7075-T6 Aluminum Alloy”,Fat. and Fract. of Engng Matls and Structs, 10, 1987, pp. 37–49.

    Google Scholar 

  6. Nicoletto G., “Plastic Zone Sizes about Fatigue Cracks in Metals”,Int. J. of Fatigue, 11, 1989, pp. 107–115.

    Google Scholar 

  7. Atluri S.N. (Ed.),Computational Methods in the Mechanics of Fracture, North-Holland, Amsterdam, 1986.

    Google Scholar 

  8. Williams M.L., “On the Stress Distribution at the Base of a Stationary Crack”,Trans. ASME, J. Appl. Mech., 24, 1957, pp. 109–114.

    Google Scholar 

  9. Larsson S.G., Carlsson A.J., “Influence of Non-singular Stress Terms and Specimen Geometry on Small-scale Yielding at Crack Tips in Elastic-plastic Materials”,J. Mech. and Phys. of Solids, 21, 1973, pp. 263–277.

    Google Scholar 

  10. Leevers P.S., Radon J.C., “Inherent Stress Biaxiality in Various Fracture Specimen Geometries”,Int. J. of Fract., 19, 1982, pp. 311–325.

    Google Scholar 

  11. Kfouri A.P., “Some Evaluation of the Elastic T-term using Eshelby's Method”,Int. J. Fract, 1986, pp. 301–315.

  12. Smith E.W., Pascoe K.J., “The Behaviour of Fatigue Cracks subject to Applied Biaxial Stress: A Review of Experimental Evidence”,Fat. of Eng. Matls and Structs., 6, 1983, pp. 201–224.

    Google Scholar 

  13. Brown M.W., Miller K.J., “Mode I Fatigue Crack Growth under Biaxial Stress at Room and Elevated Temperature”, inMultiaxial Fatigue, ASTM STP 853, American Society for Testing and Materials, Philadelphia, 1985, pp. 135–152.

    Google Scholar 

  14. Vecchio R.S., Crompton J.S., Hertzberg R.W., “The Influence of Specimen Geometry on Near-threshold Fatigue Crack Growth”,Fat. Fract. of Eng. Mater. and Struct., 10, 1987, pp. 333–347.

    Google Scholar 

  15. Narasimhan R., Rosakis A.J., “A Finite Element Analysis of Small-scale Yielding near a Stationary Crack under Plane Stress”,J. of Mech. Phys. Solids, 36, 1988, pp. 77–117.

    Google Scholar 

  16. Owen D.R.J., Hinton E.,Finite Elements in Plasticity: Theory and Practice, Pineridge Press, Swansea, U.K., 1980.

    Google Scholar 

  17. Rice J.R., “Stresses due to a Sharp Notch in a Work-hardening Elastic-plastic Material Loaded by Longitudinal Shear”,Trans. ASME, J. of Appl. Mech., 34, 1967, pp. 287–294.

    Google Scholar 

  18. Nicoletto G., “Moirè-interferometric Fringe Patterns about Crack Tips: Experimental observations and Numerical simulation”,Optics and Lasers in Engineering, 12, 1990, in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Portions of this paper are included in the Proceedings of 9.th Congress of AIMETA, Bari, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicoletto, G. Biaxial stress effects on the elastic-plastic crack-tip displacement fields. Meccanica 25, 99–106 (1990). https://doi.org/10.1007/BF01566209

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01566209

Keywords

Navigation