Skip to main content
Log in

Measurement of thermal diffusivity and anisotropy of plasma-sprayed coatings

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal diffusivity of free-standing tungsten and zirconia plasma-sprayed coatings was measured in the directions parallel and perpendicular to their surface. The parallel thermal diffusivity was evaluated by a double-sensing Laplace-transform technique and compared to the perpendicular values obtained by the (lash technique. Ratios between the parallel and the perpendicular thermal diffusivity values were in the range of 1.1 to 1.5 for zirconia and 4 to 6 for tungsten. The results are discussed in terms of the coating thickness and microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. MacPherson,Thin Solid Films 83:297 (1981).

    Google Scholar 

  2. R. MacPherson,Thin Solid Films 112:89 (1984).

    Google Scholar 

  3. L. Pawlowski, D. Lombard, and P. Fauchais,J. Vac. Sci. Technol. A 3:2494 (1985).

    Google Scholar 

  4. P. Cielo and S. Dallaire,J. Mater. Eng. 9:71 (1987).

    Google Scholar 

  5. L. C. Aamodt, J. W. Maclachlan Spicer, and J. C. Murphy, inPhotoacouslic and Photothermal Phenomena 2, J. C. Murphy, J. W. Maclaclan Spicer, L. Aamodt, and B. S. H. Royce, eds. (Springer-Verlag, Berlin, 1990), p.59.

    Google Scholar 

  6. M. F. Elchinger, C. Martin, and P. Fauchais,Rev. Int. Hautes Temp. Refract. 16:317 (1979).

    Google Scholar 

  7. R. Brand,High Temp.-High Press. 13:79 (1981).

    Google Scholar 

  8. P. Cielo,J. Appl. Phys. 56:230 (1984).

    Google Scholar 

  9. L. Pawlowski, D. Lombard, F. Turenne, F. Kassabji, and P. Fauchais,High Temp.-High Press. 17:611 (1985).

    Google Scholar 

  10. E. P. Roth and M. F. Smith,Int. J. Thermophys. 7:455 (1986).

    Google Scholar 

  11. J. W. Maclachlan, L. C. Aamodt, and J. C. Murphy,Ceram. Eng. Sci. Proc. 9:1181 (1988).

    Google Scholar 

  12. H. P. R. Frederikse, X. T. Ying, and A. Feldman,Mater. Res. Sac. Symp. Proc. 142:289 (1989).

    Google Scholar 

  13. T. Velinov, B. Gergov, and K. Bransalov,Rev. Phys. Appl. 25:817 (1990).

    Google Scholar 

  14. S. K. Lau, D. P. Almond, and P. M. Patel,J. Phys. D Appl. Phys. 24:428 (1991).

    Google Scholar 

  15. L. D. Favro, T. Ahmed, D. Crowter, H. J. Jin, P. K. Kuo, R. L. Thomas, and X. Wang,Proc. SPIE 1467:290 (1991).

    Google Scholar 

  16. A. Mandelis, S. B. Peralta, and J. Thoen,J. Appl. Phys. 70:1761 (1991).

    Google Scholar 

  17. C. Moreau, P. Fargier-Richard, R. G. Saint-Jacques, and P. Cielo, inProc. Int. Conf. Metallurg. Coat Thin Films, San Diego, March (1993).

  18. S. W. Kim and R. E. Taylor,Int. J. Thermophys. 14:135 (1993).

    Google Scholar 

  19. B. K. Bein, inProgress in Photothermal and Photoacoustic Science 2, A. Mandelis, ed. (Prentice-Hall, Toronto, 1993).

    Google Scholar 

  20. K. Tani, H. Nakahira, K. Miyajima, and Y. Harada,Mater. Trans. Jpn. Inst. Metals 33:618 (1992).

    Google Scholar 

  21. R. E. Taylor,High Temp.-High Press. 11:43 (1979).

    Google Scholar 

  22. I. Hatta,Int. J. Thermophys. 11:293 (1990).

    Google Scholar 

  23. A. B. Donaldson and R. E. Taylor,J. Appl. Phys. 46:4584 (1975).

    Google Scholar 

  24. F. I. Chu, R. E. Taylor, and A. B. Donaldson,J. Appl. Phys. 51:336 (1980).

    Google Scholar 

  25. M. Lachi and A. Degiovanni,J. Phys. III Fr. 1:2027 (1991).

    Google Scholar 

  26. J. C. Krapez, P. Cielo, X. Maldague, and L. A. Utracki,Polym. Comp. 8:396 (1987).

    Google Scholar 

  27. M. J. Folkes and H. A. Potts,Plast. Ruhh. Proc. Appl. 10:79 (1988).

    Google Scholar 

  28. P. Cielo, L. A. Utracki, and M. Lamontagne,Can. J. Phys. 64:1172 (1986).

    Google Scholar 

  29. F. Enguehard, D. Boscher, A. Déom, and D. Balageas,Mater. Sci. Eng. B5:127 (1990).

    Google Scholar 

  30. G. Lu and W. T. Swann,Appl. Phys. Lett. 59:1556 (1991)

    Google Scholar 

  31. H. Shibata, H. Ohm, and Y. Waseda,Mater. Jpn. Inst. Metals 32:837 (1991).

    Google Scholar 

  32. J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, and W. Banholzer,J. Appl. Phys. 71:5353 (1992).

    Google Scholar 

  33. D. Hadisaroyo, J. C. Batsale, and A. Degiovanni,J. Phys. III Fr. 2:111 (1992).

    Google Scholar 

  34. W. J. Parker, R. J. Jenkins, G. P. Butler, and G. L. Abbott,J. Appl. Phys. 32:1979 (1961).

    Google Scholar 

  35. A. Degiovanni,Rev. Gen. Therm. Fr. 185:417 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Laboratoire d'Énergetique et de Méchanique Théorique et Appliquée, B.P. 160, 54504 Vandoeuvre les Nancy, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houlbert, A.S., Cielo, P., Moreau, C. et al. Measurement of thermal diffusivity and anisotropy of plasma-sprayed coatings. Int J Thermophys 15, 525–546 (1994). https://doi.org/10.1007/BF01563712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01563712

Key Words

Navigation