Skip to main content
Log in

Estimating the virial coefficients of small polar molecules

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We adapt existing models for estimating the second and third virial coefficients of small molecules to the halogenated methanes and ethanes. We compare the results with the abundant new, high-qualityPVT data resulting from the search for alternative refrigerants. The present model provides an accurate method for calculating densities, and therefore it should provide reliable thermodynamic properties and fugacity coefficients. We give equations and parameters useful for estimating the properties of pure refrigerants and their mixtures when noPVT data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Second virial coeficient

B 12 :

Mixture cross second virial

B h :

Second virial of a hard sphere fluid

i (T):

Temperature function, second virial, Eq. (7)

C :

Third virial coefficient

C 112,C 122 :

Mixture cross third virials

C h :

Third virial of a hard sphere fluid

N :

Avogadro's number

P c :

Critical pressure

P c12 :

Characteristic critical pressure of a binary mixture

T c :

Critical temperature

T c12 :

Characteristic critical temperature of a binary mixture

T r :

Reduced temperature,T/T c

α :

Parameter measuring polar contribution toB, Eq. (3)

b :

Volume of a hard sphere molecule

f (f) :

Polynomials determining temperature dependence of the nonpolar part ofB

k 12 :

Binary interaction parameter for mixtures, Eq. (9a)

χ c :

Critical volume

α e :

Molecular polarizability

μ :

Dipole moment

μ R :

Reduced dipole moment, Eq. (4)

μ R12 :

Mixture reduced dipole moment, second virial

μ R112,μ R122 :

Mixture reduced dipole moment, third virial

ω :

Pitzer acentric factor

ω 12 :

Mixture acentric factor

σ(r):

Intermolecular potential

ϱ c :

Critical density (1/ηc)

References

  1. S. C. Saxena and K. M. Joshi,Phys. Fluids 5:1217 (1962).

    Google Scholar 

  2. R. Schramm and C. H. Weber,J. Chem. Thermodyn. 23:281 (1991).

    Google Scholar 

  3. K. S. Pitzer and R. F. Curl,J. Am. Chem. Soc. 79:2369 (1957).

    Google Scholar 

  4. C. Tsonopoulos,AlChE. J. 20:263 (1974).

    Google Scholar 

  5. N. Van Nhu, G. A. Iglesias-Silva, and F. Kohler,Ber. Bunsenges. Phys. Chem. 93:526 (1989).

    Google Scholar 

  6. E. Bich, T. Lober, and I. Millat,Fluid Phase Equil. 75:149 (1992).

    Google Scholar 

  7. E. Bich, H. Hendle, T. Lober, and J. Millat,Fluid Phase Equil. 76:199 (1992).

    Google Scholar 

  8. C. Tsonopoulos,AlChE. J. 21:827 (1975).

    Google Scholar 

  9. J. P. O'Connell and J. M. Prausnitz,Ind. Eng. Chem. Process Des. Dev. 6:245 (1967).

    Google Scholar 

  10. J. H. Dymond and E. B. Smith,The Virial Coefficients of Pure Fluids and Mixtures (Clarendon Press, Oxford, 1980).

    Google Scholar 

  11. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids (Wiley, New York, 1954), pp. 210–222.

    Google Scholar 

  12. W. H. Mears, R. F. Stahl, S. R. Orfeo, R. C. Shair, W. Thompson, and H. McCann,Ind. Eng. Chem. Ind. Ed. 47:1449 (1955).

    Google Scholar 

  13. R. Tillner-Roch and H. D. Baehr,J. Chem. Thermodyn. 24:413 (1992).

    Google Scholar 

  14. G. Morrison and M. O. McLinden,Int. J. Refrig. 16:129 (1993).

    Google Scholar 

  15. H. B. Lange and F. P. Stein,J. Chem. Eng. Data 15:56 (1970).

    Google Scholar 

  16. J. S. Rowlinson,J. Chem. Phys. 19:827 (1951).

    Google Scholar 

  17. P. L. Chueh and J. M. Prausnitz,AlChE. J. 13:896 (1967).

    Google Scholar 

  18. R. De Santis and B. Grande,AlChE. J. 25:931 (1979).

    Google Scholar 

  19. H. Orbey and J. H. Vera,AlChE. J. 29:107 (1983).

    Google Scholar 

  20. N. Van Nhu and F. Kohler,Ber. Bunsenges. Phys. Chem. 92:1129 (1988).

    Google Scholar 

  21. J. Gallagher, M. McLinden, and G. Morrison.NIST Thermodynamic Properties ol Refrigerants und Refrigerant Mixtures Database, Version 3.0, NIST Standard Reference Database 23 (National Institute of Standards and Technology, Gaithersburg, MD, 1992). (Copyright 1990, U.S. Department of Commerce)

    Google Scholar 

  22. L. A. Weber.Int. J. Thermophys. 10:617 (1989).

    Google Scholar 

  23. D. R. Deffibaugh, G. Morrison, and L. A. Weber. submitted for publication.

  24. S. J. Boyes and L. A. Weber,Int. J. Thermophys. 15:443 (1994).

    Google Scholar 

  25. P. M. Sigmund, I. H. Silberberg, and J. J. McKetta,J. Chem. Eng. Data 17:168 (1972).

    Google Scholar 

  26. L. Haar and J. S. Gallagher,J. Phys. Chem. Ref. Data 7:635 (1978).

    Google Scholar 

  27. G. Natour, H. Schuhmacher, and B. Schramm,Fluid Phase Equil. 49:67 (1989).

    Google Scholar 

  28. G. Handel, R. Kleinrahm, and W. Wagner,J. ChEm. Thermodyn. 24:697 (1992).

    Google Scholar 

  29. C. M. Bignell and P. J. Dunlop.J. Chem. Eng. Data 38:139 (1993).

    Google Scholar 

  30. S. J. Boves and L. A. Weber, in press.

  31. C. M. Bignell and P. J. Dunlop,J. Chem. Phys. 98:4889 (1993).

    Google Scholar 

  32. L. A. Weber,J. Chem. Eng. Data 35:237 (1990).

    Google Scholar 

  33. A. R. H. Goodwin and M. R. Moldover,J. Chem. Phys. 95:5236 (1991).

    Google Scholar 

  34. L. A. Weber,Proc. XVIII Int. Congr. Ref, Montreal (Int. Ins. Refr., Paris, 1991).

  35. A. M. Demiriz, R. Kohlen, C. Koopmann, D. Moeller, P. Sauermann, G. A. Iglesias-Silva, and F. Kohler,Fluid Phase Equil. 85:313 (1993).

    Google Scholar 

  36. A. R. H. Goodwin and M. R. Moldover,J. Chem. Phys. 95:5230 (1991).

    Google Scholar 

  37. C. W. Meyer and G. Morrison,J. Phys. Chem. 95:3860 (1991).

    Google Scholar 

  38. A. R. H. Goodwin and G. Morrison,J. Phys. Chem. 96:5521 (1992).

    Google Scholar 

  39. L. A. Weber,Int. J. Thermophys. 13:1011 (1992).

    Google Scholar 

  40. H. B. Brugge, C.-A. Hwang, W. J. Rogers, J. C. Holste, K. R. Hall, W. Lemming, G. J. Esper, K. N. Marsh, and B. E. Gammon,Physica A 156:382 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, L.A. Estimating the virial coefficients of small polar molecules. Int J Thermophys 15, 461–482 (1994). https://doi.org/10.1007/BF01563708

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01563708

Key Words

Navigation