Skip to main content
Log in

Dijet production cross-section and fragmentation of jets produced inp p collisions at\(\sqrt s \)=63 GeV

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We present stdies of events triggered on two high-p T jets, produced inpp collisions at the CERN Intersecting Storage Rings (ISR) at\(\sqrt s \)=63 GeV, using a large solid angle calorimeter. The cross-section for producing two jets is measured in the dijet mass range 17–50 GeV/c2. A high-statistics sample of dijet events, where each jet has transverse energy above 10 GeV, is used to study the structure of jets and the associated event. We find the longitudinal fragmentation function to be similar to that of jets emerging frome + e collisions but considerably harder than that observed at the Super Proton Synchrotron (SPS)\(p\bar p\) Collider. A steepening of the fragmentation function is observed when increasing the jet energy. Studies of the charge distribution in jets show that these predominantly originate from fragmenting valence quarks. The transverse energy and particle flows are presented as functions of the azimuthal distance from the jet axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Åkesson et al.: Phys. Lett.118B, 185 and 193 (1982)

    Google Scholar 

  2. A.L.J. Angelis et al.: Phys. Lett.126B, 132 (1983)

    Google Scholar 

  3. T. Åkesson et al.: Phys. Lett.123B, 133 (1983); T. Åkesson et al.: Phys. Lett.128B, 354 (1983)

    Google Scholar 

  4. M. Banner et al.: Phys. Lett.118B, 203 (1982); G. Arnison et al.: Phys. Lett.121B, 115 (1983)

    Google Scholar 

  5. C. de Marzo et al.: Phys. Lett.112B, 173 (1982); C. de Marzo et al.: Nucl. Phys.B211, 375 (1983)

    Google Scholar 

  6. B. Brown et al.: Phys. Rev. Lett.49, 711 (1982); W. Selove et al.: Proc. 21st Int. Conf. on High Energy Physics, Paris, 1982, J. Phys.43, Suppl. 12, C3-131 (1982)

    Google Scholar 

  7. R. Horgan, M. Jacob: Nucl. Phys.B179, 441 (1981); T. Åkesson, H.U. Bengtsson: Phys. Lett.120B, 233 (1983); R. Odorico: Nucl. Phys.B228, 381 (1983)

    Google Scholar 

  8. M. Althoff et al.: Z. Phys. C—Particles and Fields22, 307 (1984); D. Bender et al.: Phys. Rev.D31, 1 (1985)

    Google Scholar 

  9. M. Jacob: Proc. 22nd Int. Conf. on High Energy Physics, Leipzig, 1984 (Akademie der Wissenschaften der DDR, Leipzig, 1984), vol. 2, p. 150, and references therein

    Google Scholar 

  10. T. Åkesson et al.: Z. Phys. C-Particles and Fields25, 13 (1984)

    Google Scholar 

  11. H. Gordon et al.: Nucl. Instrum. Methods196, 303 (1982); O. Botner et al.: Nucl. Instrum. Methods196, 315 (1982)

    Google Scholar 

  12. O. Botner et al.: Nucl. Instrum. Methods179, 45 (1981); T. Åkesson et al.: Preprint CERN-EP/85-80, submitted to Nucl. Instrum. Methods (1985)

    Google Scholar 

  13. D. Cockerill et al.: Phys. Scr.23, 649 (1981)

    Google Scholar 

  14. L. Rosselet: Proc. Topical Conference on the Application of Microprocessors to High Energy Physics Experiments, CERN, Geneva, 1981, CERN 81-07, p.316 (1981)

  15. F. Paige, S. Protopopescu: BNL 31987 (1982) and BNL 29777 (1981), with updates to version 4.0

  16. R.D. Field, R.P. Feynman: Phys. Rev.D15, 2590 (1977); R.D. Field, R.P. Feynman: Nucl. Phys.B138, 1 (1978)

    Google Scholar 

  17. Z. Koba, H.B. Nielsen, P. Olesen: Nucl. Phys.B40, 317 (1972)

    Google Scholar 

  18. D.W. Duke, J.F. Owens: Phys. Rev.D30, 49 (1984)

    Google Scholar 

  19. O. Benary et al.: BNL Internal Report OG-613 (1981) and AFS Internal Note 313 (1981)

  20. R. Bock et al.: Nucl. Instrum. Methods186, 533 (1981)

    Google Scholar 

  21. P. Ghez: To appear in Proc. 5th Topical Workshop on Proton-Antiproton Physics, Saint-Vincent, 1985

  22. G. Arnison et al.: Phys. Lett.132B, 223 (1983)

    Google Scholar 

  23. R. Brandelik et al.: Phys. Lett.100B, 357 (1981)

    Google Scholar 

  24. We use the parametrization for minimum bias events:\(dE_T /dy = \left[ { - 0.571 + 0.485\ln \left( {\sqrt s /GeV} \right)} \right]GeV\) obtained by integration of data in: B. Alper et al.: Nucl. Phys.B100, 237 (1975), and K. Guettler et al.: Phys. Lett.64B, 111 (1976)

    Google Scholar 

  25. H. Bøggild: Multiplicity correlations in events triggered on jets, compared with minimum bias ande + e , AFS Internal Note 427 (1984), and Sect. 4.5 of this paper

Download references

Author information

Authors and Affiliations

Authors

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

The Axial Field Spectrometer Collaboration., Åkesson, T., Albrow, M.G. et al. Dijet production cross-section and fragmentation of jets produced inp p collisions at\(\sqrt s \)=63 GeV. Z. Phys. C - Particles and Fields 30, 27–43 (1986). https://doi.org/10.1007/BF01560675

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01560675

Keywords

Navigation