Advertisement

Ukrainian Mathematical Journal

, Volume 28, Issue 1, pp 9–19 | Cite as

Some questions of the spectral theory of differential equations of elliptic type in the space of vector functions on a finite interval

  • V. I. Gorbachuk
  • M. L. Gorbachuk
Article

Keywords

Differential Equation Vector Function Spectral Theory Finite Interval Elliptic Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Pt. 1, Oxford Univ. Press (1962).Google Scholar
  2. 2.
    B. M. Levitan and I. S. Sargsyan, Introduction to Spectral Theory [in Russian], Nauka, Moscow (1970).Google Scholar
  3. 3.
    M. A. Naimark, Linear Differential Operators [in Russian], Nauka, Moscow (1969).Google Scholar
  4. 4.
    I. M. Glazman, Direct Methods of Qualatative Spectral Analysis of Singular Differential Operators [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  5. 5.
    J. L. Lions, Equations Différentielles Opérationelles et Problemes aux Limites, Springer (1961).Google Scholar
  6. 6.
    S. G. Krein, Linear Differential Equations in Banach Space [in Russian], Nauka, Moscow (1967).Google Scholar
  7. 7.
    M. Sova, Equations Différentielles Opérationelles Linéaires du Second Ordre á Coefficients Constants, Praha (1970).Google Scholar
  8. 8.
    F. Z. Ziatdinov, “On linear second-order differential operators in the Hilbert space of vector functions with values from an abstract separable Hilbert space,” Izv. Vyssh. Uchebn. Zaved., Matematika, No. 4 (1960).Google Scholar
  9. 9.
    F. S. Rofe-Beketov, “The expansion in eigenfunctions of infinite systems of differential equations in thenonself-adjointand self-adjoint cases,” Matem. Sb.,51(93), No. 4 (1960).Google Scholar
  10. 10.
    Yu. M. Berezanskii, The Expansion in Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).Google Scholar
  11. 11.
    M. L. Gorbachuk, “Self-adjoint boundary-value problems for a second-order differential equation with an unbounded operator coefficient,” Funktsional. Analiz i Ego Prilozhen.,5, No. 1 (1971).Google Scholar
  12. 12.
    L. I. Vainerman, “Boundary-value problems for a strongly elliptic second-order elliptic equation in a Hilbert space,” Kibernetika, No. 6 (1973).Google Scholar
  13. 13.
    V. M. Bruk, “Dissipative extensions of differential operators of elliptic type,” in: Functional Analysis [in Russian], Ul'yanovsk, Vol. 3 (1975).Google Scholar
  14. 14.
    G. I. Laptev, “Second-order strongly elliptic equations in a Hilbert space,” Litovskii Matem. Sb., 8, No. 1 (1968).Google Scholar
  15. 15.
    V. I. Gorbachuk, “On boundary values of generalized solutions of a homogeneous Sturm-Liouville equation in the space of vector functions,” Matem. Zametki, 18, No. 2 (1975).Google Scholar
  16. 16.
    M. L. Gorbachuk and A. N. Kochubei, “Self-adjoint boundary-value problems for some classes of higher order differential-operator equations,” Dokl. Akad. Nauk SSSE,201, No 5 (1971).Google Scholar
  17. 17.
    M. G. Krein, “The theory of self-adjoint extensions of semibounded operators and its applications, II,” Matem. Sb.,21, No. 3 (1947).Google Scholar
  18. 18.
    F. S. Rofe-Beketov, “Self-adjoint extensions of differential operators in the space of vector functions,” Dokl. Akad. Nauk SSSR,184, No. 5 (1969).Google Scholar
  19. 19.
    R. A. Aleksandryan, Yu. M. Berezanskii, V. A. Il'in, and A. G. Kostyuchenko, “Some questions of spectral theory for partial differential equations. Differential equations with partial derivatives,” (Proc. symposium dedicated to the 60th birthday of Akad. S. L. Sobolev), Nauka, Moscow (1970).Google Scholar
  20. 20.
    A. A. Dezin and V. N. Maslennikova, “Nonclassical boundary-value problems. Differential equations with partial derivatives,” (Proc. symposium dedicated to the 60th birthday of Acad. S, L. Sobolev), Nauka, Moscow (1970).Google Scholar
  21. 21.
    M. I. Vishik, “On general boundary-value problems for elliptic differential equations,” Trudy Mosk. Matem. O-va,1 (1952).Google Scholar
  22. 22.
    B. M. Levitan, “Some questions of the spectral theory of differential operators,” International Congress of Mathematicians in Nice, Nauka, Moscow (1972).Google Scholar
  23. 23.
    A. V. Straus, “On extensions and the characteristic function of a symmetric operator,” Izv. Akad. Nauk SSSR, Ser. Matem.,32, No. 1 (1968).Google Scholar
  24. 24.
    M. L. Gorbachuk, A. N. Kochubei, and M. A. Rybak, “Dissipative extensions of differential operators in the space of vector functions,” Dokl. Akad. Nauk SSSR,205, No. 5 (1972).Google Scholar
  25. 25.
    M. L. Gorbachuk, A. N. Kochubei, and M. A. Rybak, “On some classes of extensions of differential operators in the space of vector functions,” in: The Application of Functional Analysis to Problems of Mathematical Physics [in Russian], Izd. Instituta Matematiki, Akad. Nauk UkrSSR, Kiev (1973).Google Scholar
  26. 26.
    V. A. Mikhailets, “On solvable and sectorial boundary-value problems for the operator Sturm-Liouville equation,” Ukrainsk. Matem. Zh.,26, No. 4 (1974).Google Scholar
  27. 27.
    V. A. Mikhailets, “On the nature of the spectrum of self-adjoint extensions of operators which admit separation of variables,” Matem. Zametki,16, No. 4 (1974).Google Scholar
  28. 28.
    V. A. Il'in and A. F. Filippov, “On the nature of the spectrum of a self-adjoint extension of the Laplace operator in abounded region,” Dokl. Akad. Nauk SSSR,191, No. 2 (1970).Google Scholar
  29. 29.
    V. I. Gorbachuk and M. L. Gorbachuk, “On self-adjoint boundary-value problems with a discrete spectrum generated by a Sturm — Liouville equation with an operator coefficient,” Funktsional. Analiz. i Ego Prilozhen.,5, No. 4 (1971).Google Scholar
  30. 30.
    V. I. Gorbachuk and M. L. Gorbachuk, “On the spectrum self-adjoint extensions of a minimal operator generated by a Sturm — Liouville expression with a potential operator,” Ukrainsk. Matem. Zh.,24, No. 6 (1972).Google Scholar
  31. 31.
    V. I. Gorbachuk and M. L. Gorbachuk, “On some classes of boundary-value problems for a Sturm-Liouville equation with a potential operator,” Ukrainsk.Matem. Zh.,24, No. 3 (1972).Google Scholar
  32. 32.
    L. I. Vainerman, Self-adjoint boundary-value problems for strongly elliptic and hyperbolic secondorder equations in a Hilbert space, Dokl. Akad. Nauk SSSR,218, No. 4 (1974).Google Scholar
  33. 33.
    J. L. Lions and E. Magenes, Notihomogeneous Boundary-Value Problems and Applications, Springer-Verlag (1972).Google Scholar
  34. 34.
    F. E. Browder, “Asymptotic distribution of eigenvalues and eigenfunotions for nonlocal elliptic boundary-value problems, I,” Amer. Jour. Math.,87 (1965).Google Scholar
  35. 35.
    R. Beals, “Classes of compact operators and eigenvalue distributions for elliptic operators,” Amer. Jour. Math.,89, No. 4 (1967).Google Scholar
  36. 36.
    V. I. Gorbachuk, “On the asymptotics of eigenvalues of boundary-value problems for differential operators in the space of vector functions,” Ukrainsk. Matem. Zh.,27, No. 5 (1975).Google Scholar
  37. 37.
    M. M. Gekhtman, “On the question of the spectrum of self-adjoint extensions of a symmetric semibounded operator,” Dokl. Akad. Nauk SSSR,186, No. 6 (1969).Google Scholar
  38. 38.
    Ky Fan, “Maximum properties and inequalities for the eigenvalues of completely continuous operators,” Proc. Nat. Acad. Sci. USA,37 (1951).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • V. I. Gorbachuk
    • 1
  • M. L. Gorbachuk
    • 1
  1. 1.Mathematics InstituteAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations