Skip to main content
Log in

Bases anatomiques de la mémoire

  • Published:
Anatomia Clinica Aims and scope Submit manuscript

Résumé

Les données cliniques et anatomo-pathologiques ont permis de suggérer le rôle du circuit hippocampo-mamillo-thalamique dans certains processus mnésiques. Récemment des critiques ont été apportées mettant en cause le rôle même de ce circuit et impliquant d'autres formations: hile du lobe temporal; noyau médio-dorsal du thalamus, amygdale. L'étude des relations anatomiques précises du circuit hippocampo-mamillo-thalamique permet de montrer l'importance dans le circuit lui-même de certaines formations comme le subiculum et l'aire entorhinale. Par ailleurs, ce circuit s'intègre totalement au sein du système limbique au sens large, tel que l'a défini Nauta (1961) et par là à des structures comme l'amygdale, le noyau médio-dorsal du thalamus, le cortex orbito-frontal, le septum et la réticulée mésencéphalique.

Mais au sein même de ce système limbique, il semble exister une spécificité de relation des éléments en rapport avec le circuit hippocampo-mamillo-thalamique.

Enfin, le circuit HMT ne peut pas se concevoir comme restreint au système limbique. Il est en relation étroite avec l'ensemble du cortex et particulièrement avec le cortex frontal, ce que rappellent les désordres mnésiques entraînés par les lésions de cette région.

Le circuit HMT n'est donc pas la mémoire mais reste un modèle et un point de départ utile sinon indispensable dans son étude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  • Amaral DC, Sinnamon HM: The locus eoeruleus: neurobiology of a central noradrenergic nucleus. Prog Neurobiol 9:147–196, 1977

    PubMed  Google Scholar 

  • Azmitia EC, Segal M: An autoradiographic analysis of the differential ascending projections of the dorsal and median raphé nuclei in the rat. J Comp Neurol 179:641–668, 1978

    PubMed  Google Scholar 

  • Baulac M: Contribution à l'étude anatomique et anatomo-clinique du gyrus cingulaire antérieur. Thèse Méd Paris 1979

  • Beckstead BM: An autoradiographic examination of cortico cortical and sub-cortical projections of the medio dorsal-projection (préfrontal) cortex in the rat. J Comp Neurol 184:43–62, 1979

    PubMed  Google Scholar 

  • Brierley JB: Neuropathology of amnesic states. In: Amnesia, CWM Whitty and OC Zangwill, eds. London, Boston: Butter-worths Pub 1977

    Google Scholar 

  • Brion S, Pragier R, Guerin R, Teitgen M: Syndrome de Korsakoff par ramollissement bilatéral du fornix. Le problème des syndromes amnésiques par lésion vasculaire unilatérale. Rev Neurol 120:255–262, 1969

    PubMed  Google Scholar 

  • Chavis DA, Pandya DN: Further observations on cortico frontal connections in the Rhesus Monkey. Brain Res 117:369–386, 1976

    PubMed  Google Scholar 

  • Cruce JAF: An autoradiographic study of the descending connections of the mammillary nuclei of the rat. J Comp Neurol 176:631–644, 1977

    PubMed  Google Scholar 

  • Dahlström A, Fuxe K: Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand [Suppl.] 62:1–55, 1964

    Google Scholar 

  • Davis KL, Yamamura HI: Cholinergic underactivity in human memory disorders. Life Sci 23:1729–1734, 1978

    PubMed  Google Scholar 

  • Déjerine J: Anatomie des centres nerveux. Paris: Rueff et Cie 1895

    Google Scholar 

  • Delay J, Brion S, Elissalde B: Corps mamillaires et syndrome de Korsakoff. Etude anatomique de huit cas de Korsakoff d'origine alcoolique sans altération significative du cortex cérébral. I. Etude anatomo-clinique. II Tubercules mamillaires et mécanisme de la mémoire. Presse Med 66:1849–1852, 1965–1968, 1958

    PubMed  Google Scholar 

  • Domesick VB: Projections from the cingulate cortex in the rat. Brain Res 12: 296–320, 1969

    PubMed  Google Scholar 

  • Domesick VB: Thalamic relations of the medial cortex in the rat. Brain Behav Evol 6: 457–487, 1972

    PubMed  Google Scholar 

  • Fallon JH, Koziell DA, Moore RY: Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol 180:509–532, 1978

    PubMed  Google Scholar 

  • Fallon JH, Moore RY: Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180:545–580, 1978

    PubMed  Google Scholar 

  • Fricke R, Cowan WM: An autoradiographic study of the commissural and ipsilateral hippocampo-dentate projections in the adult rat. J comp Neurol 181:253–270, 1978

    PubMed  Google Scholar 

  • Gerebtzoff MA: Cholinesterases. A histochemical contribution to the solution of some functional problems. London: Pergamon 1959

    Google Scholar 

  • Gerebtzoff MA, Ziegels J, Duchesne PY: Le thalamus des mammifères et de l'homme. Organisation structurale, fonctionelle et cytochimique. Bull Assoc Anat 57:727–828, 1973

    Google Scholar 

  • Guillery RW: Degeneration in the post-commissural fornix and the mamillary peduncle of the rat. J Anat 90:350–370, 1956

    PubMed  Google Scholar 

  • Hall E: Some aspects of the structural organization of the amygdala. In: The neurobiology of the amygdala, Eleftheriou BE ed. New York: Plenum 1978

    Google Scholar 

  • Hassler R, Reichert T: Über einen Fall von doppelseitiger Fornicotomie bei sogenannter temporaler Epilepsie. Acta Neurochirurgica 5:330–340, 1957

    PubMed  Google Scholar 

  • Heath RG, Harber JW: Descending projections of the rostral septal region: an electrophysiological-histological study in the cat. Exp Neurol 50:536–560, 1976

    PubMed  Google Scholar 

  • Heilbronn E, Bartfai T: Muscarinic acetylcholine receptor. Prog Neurobiol 11:171–188, 1978

    PubMed  Google Scholar 

  • Herkenham M: The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177:589–610, 1978

    PubMed  Google Scholar 

  • Herzog AG, Van Hoesen GW: Temporal neocortical afferent connection to the amygdala in the rhesus monkey. Brain Res 195:57–60, 1976

    Google Scholar 

  • Van Hoesen GW, Pandya DN: Some connections of the entorhinal (area 28) and peririhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1–24, 1975

    PubMed  Google Scholar 

  • Van Hoesen GW, Pandya DN, Butters N: Some connections of the entorhinal (area 28) and perirhineal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res 95:25–38, 1975

    PubMed  Google Scholar 

  • Horel JA: The neuroanatomy of amnesia: a critique of the hippocampal memory hypothesis. Brain 101: 403–445, 1978

    PubMed  Google Scholar 

  • Ibata Y, Desiraju T, Pappas GD: Light and electron microscopic study of the projection of the medial septal nucleus to the hippocampus of the cat. Exp Neurol 33:103–122, 1971

    PubMed  Google Scholar 

  • Jacobson S, Trojanowski JQ: Amygdaloid projections to prefrontal granular cortex in rhesus monkey demonstrated with H.R.P. Brain Res 100:132–139, 1975

    PubMed  Google Scholar 

  • Jones BE, Moore RY: Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res 127:23–53, 1977

    Google Scholar 

  • Jones EG, Powell TPS: An anatomical study in converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820, 1970

    PubMed  Google Scholar 

  • Kim C, Chang HK, Chu JW: Consequences of ablating mamillary bodies in dogs. J Comp Physiol 63:496–476, 1967

    Google Scholar 

  • Köhler C, Shipley MT, Srebro B, Harkmark W: Some retrohippocampal afférents to the entorhinal cortex. Cells of origin as studied by the H.R.P. method in the rat and mouses. Neurosci Letters 10:115–120, 1978

    Google Scholar 

  • Kooy DVD, Kuypers HGJM, Catsman-Berrevoets CE: Single body cells with divergent axon collaterals. Demonstration by a simple, fluorescent retrograde double labeling technique in the rat. Brain Res 158:189–196, 1978

    Google Scholar 

  • Krayniak PF, Siegel A, Meibach RC, Fruchtman D, Scrimenti M: Origin of the fornix system in the squirrel monkey. Brain Res 160:401–411, 1979

    PubMed  Google Scholar 

  • Krettek JE, Price JL: Projections from the amygdala to the perirhinal and entorhinal cortices and the subiculum. Brain Res 71:150–154, 1974

    PubMed  Google Scholar 

  • Krettek JE, Price JL: The cortical projections of the medio dorsal nucleus and adjacent nuclei in the rat. J Comp Neurol 171:157–192, 1977

    PubMed  Google Scholar 

  • Larson SJ: The efferent connections of the cingulate gyrus in the macaque. Anat Rec 142:251, 1962

    Google Scholar 

  • Leichnetz GR, Astruc J: The squirrel monkey entorhinal cortex: architecture and medial frontal afferents. Brain Res Bull 1:351–358, 1976a

    PubMed  Google Scholar 

  • Leichnetz GR, Astruc J: The efferent projections of the medial prefrontal cortex in the squirrel monkey (Saimiri scivreus). Brain Res 109:455–412, 1976b

    PubMed  Google Scholar 

  • Leichnetz GR, Astruc J: The course of some prefrontal cortico fugals to the pallidum, substantia innominata and amygdaloid complex in monkeys. Exp Neurol 54:104–109, 1977

    PubMed  Google Scholar 

  • Mac Entee WJ, Biber MP, Perl DP, Benson DF: Diencephalic amnesia: a reappraisal. J Neurol Neurosurg Psychiatry 39:436–441, 1976

    PubMed  Google Scholar 

  • Malamud M, Skillicorn SA: Relationship between the Wernicke and the Korsakoff syndrome. AMA Arch Neurol Psychiat 76:585–596, 1956

    Google Scholar 

  • Means LW, Harrell TH, Mayo ES, Alexander GB: Effects of dorso-medial thalamic lesions on spontaneous alternation, maze activity and runway performance in the rat. Physiol Behav 12:973–979, 1974

    PubMed  Google Scholar 

  • Meibach RC, Siegel A: The origin of fornix fibers which project to the mamillary bodies in the rat: an horse-radish peroxydase study. Brain Res 88:508–512, 1975

    PubMed  Google Scholar 

  • Mellgren SI, Harkmark W, Srebro B: Some enzyme histochimical characteristics of the human hippocampus. Cell Tiss Res 181:459–471, 1977

    Google Scholar 

  • Nauta WJH: Fibre degeneration following lesions of the amygdaloid complex in the monkey. J Anat 95:515–531, 1961

    PubMed  Google Scholar 

  • Nauta WJH: Neural associations of the amygdaloid complex in the monkey. Brain 85:505–521, 1962

    PubMed  Google Scholar 

  • Nauta WJH, Haymaker W: Hypothalamic nuclei fiber connections. In The hypothalamus, W Haymaker, E Anderson, WJN Nauta eds. Springfield: Thomas Pub 1969

    Google Scholar 

  • Niimi M: Cortical projections of the anterior thalamic nuclei in the cat. Exp Brain Res 31:403–416, 1978

    PubMed  Google Scholar 

  • Niimi K, Niimi M, Okada Y: Thalamic afferents to the limbic cortex in the cat studied with the method of retrograde axonal transport of H.R.P. Brain Res 145:225–238, 1978

    PubMed  Google Scholar 

  • Olton DS, Walker JA, Gage FH: Hippocampal connections and spatial discrimination. Brain Res 139:295–308, 1978

    PubMed  Google Scholar 

  • Pandya DN, Kuypers HGJM: Cortico-cortical connections in the rhesus monkey. Brain Res 13:13–36, 1969

    PubMed  Google Scholar 

  • Pandya DN, Dye P, Butters N: Efferent cortico-cortical projections of the prefrontal cortex in the rhesus monkey. Brain Res 31:35–46, 1971

    PubMed  Google Scholar 

  • Pandya DN, Van Hoesen GW, Domesick VB: A cingulo-amygdaloid projection in the rhesus monkey. Brain Res 61:369–373, 1973

    PubMed  Google Scholar 

  • Papez JW: A proposed mechanism of emotion. AMA Arch Neurol Psychiat 38:725–743, 1937

    Google Scholar 

  • Penfield W, Milner B: Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiat 79:475–497, 1958

    Google Scholar 

  • Ploog DW, Mc Lean PD: On functions of mamillary bodies in the squirrel monkey. Exp Neurol 7:76–85, 1963

    PubMed  Google Scholar 

  • Poletti CE, Creswell G: Fornix system efferent projections in the squirrel monkey: an experimental degeneration study. J Comp Neurol 175:101–128, 1977

    PubMed  Google Scholar 

  • Powell EW: Limbic projections to the thalamus. Exp Brain Res 17:394–401, 1973

    PubMed  Google Scholar 

  • Powell EW: The cingulate bridge between allocortex, isocortex and thalamus. Anat Rec 190:783–794, 1978

    PubMed  Google Scholar 

  • Powell TPS, Cowan WM: The origin of the mamillo-thalamic tract in the rat. J Anat (London) 88:489–497, 1954

    Google Scholar 

  • Raisman G: The connexions of the septum. Brain 89:317–348, 1966

    PubMed  Google Scholar 

  • Rosene DL, Van Hoesen GW: Hippocampal efferents reach widespread areas of the cerebral cortex and amygdala in the rhesus monkey. Science 198:315–317, 1977

    PubMed  Google Scholar 

  • Rosenstock J, Field TD, Greene E: The role of mamillary bodies in spatial memory. Exp Neurol 55:340–352, 1977

    PubMed  Google Scholar 

  • Schlessinger AR, Cowan WH, Swanson LW: The time of origin of neurons in Ammon's horn and the associated retrohippocampal fields. Anat Embryol 154:153–173, 1978

    PubMed  Google Scholar 

  • Schulman S: Impaired delayed response from thalamic lesions. Arch. Neurol (Chicago) 11:477–499, 1964

    Google Scholar 

  • Scoville WB, Milner B: Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21, 1957

    Google Scholar 

  • Segal M: Afferents to the entorhinal cortex of the rat studied by the method of retrograde transport of H.R.P. Exp Neurol 57:750–765, 1977

    PubMed  Google Scholar 

  • Seltzer B, Pandya DN: Some cortical projections to the parahippocampal area in the rhesus monkey. Exp Neurol 50:146–160, 1976

    PubMed  Google Scholar 

  • Shipley MT, Geneser-Jensen FA, Meier A: Correlated histochemical and experimental evidence for a subdivision of the entorhinal area of the guinea pig. Cell Tiss Res 150:455–462, 1974

    Google Scholar 

  • Siegel A, Tassoni JP: Differential efferent projections of the lateral and medial septal nuclei to the hippocampus in the cat. Brain Behav Evol 4:201–219, 1971a

    PubMed  Google Scholar 

  • Siegel A, Tassoni JP: Differential efferent projections from the ventral and dorsal hippocampus of the cat. Brain Behav Evol 4:185–200, 1971b

    PubMed  Google Scholar 

  • Siegel A, Sasso L, Tassoni JP: Fiber connections of the temporal lobe with the corpus striatum and related structures in the cat. Exp Neurol 33:130–146, 1971

    PubMed  Google Scholar 

  • Siegel A, Troiano R, Royce A: Differential projections of the anterior and posterior cingulate gyrus to the thalamus in the cat. Exp Neurol 38:192–201, 1973

    PubMed  Google Scholar 

  • Spiegel EA, Wycis HT, Ochinik LW, Freed H: The thalamus and temporal orientation. Science 127:771–772, 1955

    Google Scholar 

  • Stern K: Severe dementia associated with bilateral symmetrical degeneration of the thalamus. Brain 62:157–171, 1939

    Google Scholar 

  • Steward O: Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol 167:285–314, 1976

    PubMed  Google Scholar 

  • Storm-Mathisen J, Blackstadt TW: Cholinesterase in the hippocampal region. Acta Anat 56:216–253, 1964

    PubMed  Google Scholar 

  • Swanson LW, Cowan WH: An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49–84, 1977

    PubMed  Google Scholar 

  • Swanson LW, Wyss JM, Cowan WM: An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol 181:681–715, 1978

    PubMed  Google Scholar 

  • Troiano R, Siegel A: The ascending and descending connections of the hypothalamus in the cat. Exp Neurol 49:161–173, 1975

    PubMed  Google Scholar 

  • Valenstein ES, Nauta WJH: A comparison of the distribution of the fornix system in the rat, guinea pig, cat and monkey. J Comp Neurol 113:337–361, 1959

    PubMed  Google Scholar 

  • Veening JC: Cortical afferents of the amygdaloid complex in the rat: an H.R.P. study. Neurosci Letters 8:191–195, 1978a

    Google Scholar 

  • Victor M, Adams RD, Collins GH: The Wernicke-Korsakoff Syndrome. A clinical and pathological study of 241 patients, 82 with post-mortem examination. Oxford: Blackwell 1971

    Google Scholar 

  • Wakefield C, Hall F: Hypothalamic projections to the amygdale in the cat. Cell Tiss Res 151:499–508, 1974

    Google Scholar 

  • Warren JM, Akert K: Impaired problem solving by cats with thalamic lesions. J Comp Physiol Psychol 53:207–211, 1960

    PubMed  Google Scholar 

  • Wernicke C: Lehrbuch der Gehirnkrankheiten, Vol. 2. Berlin: 1881

  • Whitlock DG, Nauta WJH: Subcortical projections from the temporal neocortex in Macaca Mulatta. J Comp Neurol 106:183–212, 1956

    PubMed  Google Scholar 

  • Woolsey RM, Nelson JS: Asymptomatic destruction of the fornix in man. Arch Neurol 32:566–568, 1975

    PubMed  Google Scholar 

  • Yakovlev PE, Locke S: Limbic nuclei of thalamus and conections of limbic cortex. III. Cortico-cortical connection of the anterior cingulate gyrus, the cingulum and the subcallosal bundle in monkey. Arch Neurol 5:364–400, 1961

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meininger, V., Baulac, M. Bases anatomiques de la mémoire. Anat. Clin 2, 275–282 (1980). https://doi.org/10.1007/BF01557991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01557991

Mots clés

Navigation