Skip to main content
Log in

Highly conformationally constrained halogenated 6-spiroepoxypenicillins as probes for the bioactive side-chain conformation of benzylpenicillin

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The halogenated 6-spiroepoxypenicillins are a series of novel semisyntheticβ-lactam compounds with highly conformationally restricted side chains incorporating an epoxide. Their biological activity profiles depend crucially on the configuration at position C-3 of that epoxide. In derivatives with aromatic-containing side chains, e.g., anilide, the 3R-compounds possess notable Gram-positive antibacterial activity and potentβ-lactamase inhibitory properties. The comparable 3S-compounds are antibacterially inactive, but retainβ-lactamase inhibitory activity.

Using the molecular simulation programs COSMIC and ASTRAL, we attempted to map a putative, lipophilic accessory binding site on the PBPs that must interact with the side-chain aromatic residue. Comparative computer-assisted modelling of the 3R, and 3S-anilides, along with benzylpenicillin, indicated that the available conformational space at room temperature for the side chains of the 3R and the 3S-anilides was mutually exclusive. The conformational space for the more flexible benzylpenicillin could accommodate the side chains ofboth the constrained penicillin derivatives. By a combination of van der Waals surface calculations and a pharmacophoric distance approach, closely coincident conformers of the 3R-anilide and benzylpenicillin were identified. These conformers must be related to the antibacterial, ‘bioactive’ conformer for the classicalβ-lactam antibiotics. From these proposed bioactive conformations, a model for the binding of benzylpenicillin to the PBPs relating the three-dimensional arrangement of a putative lipophilic S2-subsite, specific for the side-chain aromatic moiety, and the 3α-carboxylate functionality is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd, D.B., In Morin, R.B. and Gorman, M. (Eds.) Chemistry and Biology ofβ-lactam Antibiotics, Vol. 1: Penicillins and Cephalosporins, Academic Press, New York, 1982, pp. 437–545.

    Google Scholar 

  2. Price, K.E., In Perlman, D. (Ed.) Structure-Activity Relationships among the Semisynthetic Antibiotics, Academic Press, New York, 1977, pp. 1–59 and 61–86.

    Google Scholar 

  3. Sassiver, M.L. and Lewis, A., ibid., pp. 87–160.

    Google Scholar 

  4. Webber, J.A. and Ott, J.L., ibid., pp. 161–237.

    Google Scholar 

  5. Jung, F.A., Pilgrim, W.R., Poyser, J.P. and Siret, P.J., In Sammes, P.G. (Ed.) Topics in Antibiotic Chemistry, Vol. 4, Wiley, New York, 1980, pp. 11–265.

    Google Scholar 

  6. Recently, even the necessity for the presence of aβ-lactam ring to instil ‘β-lactam-type’ antibacterial activity has been called into question. See for example: Nozaki, Y., Katayama, N., Ono, H., Tsubotani, S., Harada, S., Okazaki, H. and Nakao, Y., Nature, 325 (1987), 179–180; also: Natsugari, H., Kawano, Y., Morimoto, K., Yoshioka, K. and Ochiai, M., J. Chem. Soc., Chem. Commun., (1987) 62–63.

    PubMed  Google Scholar 

  7. Woodward, R.B., Philos. Trans. R. Soc. Lond. Ser. B., 289 (1980) 239–250.

    Google Scholar 

  8. Kaiser, G.V. and Kukolja, S., In Flynn, E.H. (Ed.) Cephalosporins and Penicillins: Chemistry and Biology, Academic Press, New York, 1972, pp. 74–133.

    Google Scholar 

  9. Schechter, I. and Berger, A., Biochem. Biophys. Res. Commun., 27 (1967) 157–162.

    PubMed  Google Scholar 

  10. Hassall, C.H., Kröhn, A., Moody, C.J. and Thomas, W.A., J. Chem. Soc., Perkin Trans. 1 (1984) 155–164.

    Google Scholar 

  11. Kessler, H., Angew. Chem. Int. Ed. Engl., 21 (1982) 512–523.

    Google Scholar 

  12. Hruby, V., J., Trends Pharm. Sci., 6 (1985) 259–262.

    Google Scholar 

  13. Bycroft, B.W., Shute, R.E. and Begley, M.J., J. Chem. Soc., Chem. Commun., (1988) 274–276.

  14. Bycroft, B.W., Shute, R.E. and Begley, M.J., J. Chem. Soc., Chem. Commun., (1988) 276–278.

  15. Gledhill, L., Bycroft, B.W. and Williams, P., 27th Interscience Conference on Antimicrobial Agents and Chemotherapy, New York, (Abstract No. 1206), Am. Soc. Microbiol. Publ., Washington, DC, U.S.A., 1987.

    Google Scholar 

  16. Gledhill, L., Ph.D. Thesis, University of Nottingham, U.K., 1988.

    Google Scholar 

  17. Vinter, J.G., Davis, A. and Saunders, M.R., J. Comput. Aided Mol. Design, 1 (1987) 31–51.

    Google Scholar 

  18. Sweet, R.M., In Flynn, E.H. (Ed.) Cephalosporins and Penicillins: Chemistry and Biology, Academic Press, New York, 1972, pp. 280–309

    Google Scholar 

  19. Boles, M.O. and Girven, R.J., Acta Crystallogr., Sect. B, 32 (1976) 2279–2284.

    Google Scholar 

  20. Keith, D.D., Tengi, J., Rossman, P., Todaro, L. and Weigele, M., Tetrahedron, 39 (1983) 2445–2458.

    Google Scholar 

  21. Fazakerly, G.V. and Jackson, G.E., J. Inorg. Nucl. Chem., 37 (1975) 2371–2375.

    Google Scholar 

  22. Clayden, N.J., Dobson, C.M., Lian, L.-Y. and Twyman, J.M., J. Chem. Soc., Perkin Trans. 2, (1986) 1933–1940.

    Google Scholar 

  23. Cohen, N.C., J. Med. Chem., 26 (1983) 259–264.

    PubMed  Google Scholar 

  24. Dexter, D.D. and van der Veen, J.M., J. Chem. Soc., Perkin Trans. 1 (1978) 185–190.

    Google Scholar 

  25. Lo, Y.S. and Sheehan, J.C., J. Am. Chem. Soc., 94 (1972) 8253.

    PubMed  Google Scholar 

  26. Lo, Y.S. and Sheehan, J.C., J. Org. Chem., 38 (1973) 3227–3228.

    PubMed  Google Scholar 

  27. Rolinson, G.N., J. Antimicrob. Agents Chemother., 17 (1986) 5–36.

    Google Scholar 

  28. Spratt, B.G., Proc Nat. Acad. Sci. U.S.A., 72 (1975) 2999–3003.

    Google Scholar 

  29. Blanpain, P.C., Nagy, J.B., Laurent, G.H. and Durant, F.V., J. Med. Chem., 23 (1980) 1283–1292.

    PubMed  Google Scholar 

  30. Charlier, P., Dideberg, O., Frère, J.-M., Moews, P.C. and Knox, J.R., J. Mol. Biol., 171 (1983) 237–238.

    PubMed  Google Scholar 

  31. Kelly, J.A., Dideberg, O., Charlier, P., Wéry, J.P., Libert, M., Moews, P.C., Knox, J.R., Frère, J.-M. and Ghuysen, J.-M., Science, 231 (1986) 1429–1431.

    PubMed  Google Scholar 

  32. Samraoui, B., Sutton, B.J., Todd, R.J., Artymiuk, P.J., Waley, S.G. and Phillips, D.C., Nature, 320 (1986) 378–380.

    PubMed  Google Scholar 

  33. Herzberg, O. and Moult, J., Science, 236 (1987) 694–701.

    PubMed  Google Scholar 

  34. Dideberg, O., Charlier, P., Wéry, J.-P., Dehottay, P., Dusart, J., Erpicum, T., Frère, J.-M. and Ghuysen, J.-M., Biochem. J., 245 (1987) 911–913.

    PubMed  Google Scholar 

  35. Kelly, J.A., Knox, J.R., Moews, P.C., Hite, G.J., Bartolone, J.B., Zhao, H., Joris, B., Frère, J.-M. and Ghuysen, J.-M., J. Biol. Chem., 260 (1985) 6449–6458.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been reported in preliminary form at the 4th Royal Society of Chemistry International Symposium on Recent Advances in the Chemistry ofβ-lactam Antibiotics, Churchill College, Cambridge, U.K., 3–6 July 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shute, R.E., Jackson, D.E. & Bycroft, B.W. Highly conformationally constrained halogenated 6-spiroepoxypenicillins as probes for the bioactive side-chain conformation of benzylpenicillin. J Computer-Aided Mol Des 3, 149–164 (1989). https://doi.org/10.1007/BF01557725

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01557725

Key words

Navigation