Skip to main content
Log in

Proton tunneling and enzyme catalysis

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Summary

It is proposed in this paper that enzymes, by virtue of a number of correctly positioned sites of interaction with substrates, can force the compression of hydrogen bonds, increasing the probability of proton transfer by quantum mechanical tunneling. By such a catalytic mechanism a rate enhancement of many orders of magnitude may be obtained with a very low energy input requirement. The mechanism would, however, require a highly structured catalyst.

Pertinent aspects of hydrogen bond theory and of tunneling theory are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, W., A. Grimison, R. Hoffman andC. Z. DeOrtiz (1968). Hydrogen Bonding in Pyridine.-J. Am. Chem. Soc.90, 1509–1516.

    Google Scholar 

  • Allison, W. S., M. J. Connors, andD. J. Parker (1969). Evidence for Direct Hydrogen Transfer During Glyceraldehyde-3-Phosphate Dehydrogenase Catalysis.-Biochem. Biophys. Res. Comm.34, 503–510.

    Google Scholar 

  • Atkinson, D. E. (1966). Regulation of Enzyme Activity.-Ann. Rev. Biochem.35, 85–124.

    Google Scholar 

  • Bell, R. P. (1959). The Proton in Chemistry (Cornell Univ. Press, Ithaca), pp. 223.

    Google Scholar 

  • Boyer, P. D., H. Lardy andK. Myrback (1959). The Enzymes,2nd ed., Vol. I (Academic Press, New York) pp. 785.

    Google Scholar 

  • Bratoz, S. (1967). Electronic Theories of Hydrogen Bonding.-Adv. in Quantum Chem.3, 209–236.

    Google Scholar 

  • Brickmann, J. andH. Zimmermann (1966). Über den Tunneleffekt des Protons im Doppelminimumpotential von Wasserstoffbrückenbindungen. 2. Mitteilung: Mittlere Tunnelfrequenzen in der Brückenbindung des Imidazols.-Berichte Bunsengesel.70, 521–524.

    Google Scholar 

  • Bruice, T. C. andS. Benkovic (1966). Bioorganic Mechanisms, Vol. I and II (Benjamin, New York) pp. 362 and pp. 419.

    Google Scholar 

  • Caldin, E. F. andM. Kasparian (1965). Quantum-Mechanical Tunnelling and the Dimensions of Energy-Barriers in Proton-Transfer Reactions in Solution.-Disc. Farad. Soc.39, 25–35.

    Google Scholar 

  • Citri, N. andN. Zyk (1967). Determination of a Constant for a Specific Conformational Transition.-Biochem. Biophys. Res. Comm.26, 216–219.

    Google Scholar 

  • Coulson, C. A. (1959). The Hydrogen Bond.—in Hydrogen Bonding, ed. D. Hadži, (Pergamon Press, New York), 339–360.

    Google Scholar 

  • Dixon, M. andE. C. Webb (1964). Enzymes,2nd ed. (Academic Press, New York) pp. 950.

    Google Scholar 

  • Eigen, M. andL. De Maeyer (1958). Self-Dissociation and Protonic Charge Transport in Water and Ice.-Proc. Roy. Soc.A247, 505–533.

    Google Scholar 

  • Fischer, S. F. (1967). Collective Excitation of Hydrogen-Bonded Ferroelectrics.-Int. J. of Quantum Chem.1S, 745–753.

    Google Scholar 

  • French, T. C. andG. G. Hammes (1965). Relaxation Spectra of Ribonuclease. II. Isomerization of Ribonuclease at Neutral pH Values.-J. Am. Chem. Soc.87, 4669–4673.

    Google Scholar 

  • Glasstone, S., K. J. Laidler andH. Eyring (1941). The Theory of Rate Processes (McGraw-Hill, New York) pp. 611.

    Google Scholar 

  • Glick, D. M. (1968). Ligand-Induced pK Changes in Chymotrypsin.-Biochemistry7, 3391–3396.

    Google Scholar 

  • Gould, E. S. (1959). Mechanism and Structure in Organic Chemistry (Holt, Rinehart and Winston, New York) pp. 787.

    Google Scholar 

  • Hadži, D. (1957). Hydrogen Bonding (Pergamon Press, New York) pp. 565.

    Google Scholar 

  • Itoh, R. (1967). Proton Transfer in Hydrogen Bond.-J. Phys. Soc. Japan22, 698–709.

    Google Scholar 

  • Koshland, D. E. (1962). The Comparison of Non-Enzyme and Enzymic Reaction Velocities.-J. Theoret. Biol.2, 75–86.

    Google Scholar 

  • —, andK. E. Neet (1968). The Catalytic and Regulatory Properties of Enzymes. -Ann. Rev. Biochem.37, 359–410.

    Google Scholar 

  • Kosower, E. M. (1962). Molecular Biochemistry, (McGraw-Hill, New York) pp. 304.

    Google Scholar 

  • Lippincott, E. R. andR. Schroeder (1955). One-Dimensional Model of the Hydrogen Bond.-J. Chem. Phys.23, 1099–1106.

    Google Scholar 

  • Löwdin, P. O. (1965). Quantum Genetics and the Aperiodic Solid. Biological Problems of Heredity, Mutation, Aging and Tumors in View of the Quantum Theory of the DNA Molecule.-Adv. in Quantum Chem.2, 213–360.

    Google Scholar 

  • Lumry, R. (1959). Some Aspects of the Thermodynamics and Mechanism of Enzyme Catalysis.—in The Enzymes (ed. A. Boyer, H. Lardy and K. Myrback, Academic Press, New York) p. 157.

    Google Scholar 

  • Messiah, A. (1961). Quantum Mechanics, Vol. I (Wiley, New York) p. 96.

    Google Scholar 

  • Murthy, A. S. N. andC. N. R. Rao (1968). Molecular Orbital Treatment of Hydrogen Bonding by the EHT and the CNDO/2 Methods: Water.-Chem. Phys. Let.2, 123–125.

    Google Scholar 

  • Nordvedt, K. (1968). Low-Temperature Effects of the Tunneling Integral in Hydrogen-Bonded Ferroelectrics.-Phys. Rev.173, 547–552.

    Google Scholar 

  • Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. (Cornell Univ. Press, Ithaca) pp. 644.

    Google Scholar 

  • Pimentel, G. C. andA. L. McClellan (1960). The Hydrogen Bond (Freeman, San Francisco), pp. 470.

    Google Scholar 

  • Porter, D. J. T. andH. J. Bright (1969). Location of Hydrogen Transfer Steps in Mechanism of Reduction of L-Amino Acid Oxidase.-Biochem. Biophys. Res. Comm.36, 209–213.

    Google Scholar 

  • Putkey, E. F. andM. Sundaralingam (1968). Structure of DL-Serine Phosphate Monohydrate: An Intermediate Phosphate Bonding System Exhibiting Very Short Hydrogen Bonds.-Nature219, 616–617.

    Google Scholar 

  • Rein, R. andF. E. Harris (1965). Studies of Hydrogen-Bonded Systems. III. Potential-Energy Surface, Tunneling, and Tautomeric Equilibria in the N-H ... N and O ... H-N Bonds of the Guanine-Cytosine Base Pair.— J. Chem. Phys.43, 4415–4421.

    Google Scholar 

  • Ressler, N. (1969). Control of Cellular Processes by the Coupling of Resonant Energy to Hydrogen Transfer Reactions. I. Application to Enzyme Mechanisms.-J. Theoret. Biol.23, 425–440.

    Google Scholar 

  • Samara, G. (1968). Pressure and Temperature Dependence of the Dielectric Properties of Hydrogen-Bonded Ferroelectrics: LiH3 (SeO3) and LiD3 (SeO3).-Phys. Rev.173, 605–613.

    Google Scholar 

  • Schroeder, R. andE. R. Lippincott (1957). Potential Function Model of Hydrogen Bonds, II. -J. Phys. Chem.61, 921–928.

    Google Scholar 

  • Stadtman, E. R. (1966). Allosteric Regulation of Enzyme Activity.-Adv. in Enzymol.28, 41–154.

    Google Scholar 

  • Swain, C. G. andJ. F. Brown (1952). Concerted Displacement Reactions VIII. Polyfunctional Catalysis.-J. Am. Chem. Soc.74, 2538–2543.

    Google Scholar 

  • Van Panthaleon van Eck, C. L., H. Mendel andJ. Fahrenfort (1958). A Tentative Interpretation of the Results of Recent X-Ray and Infrared Studies of Liquid Water andH 2 O + D2O Mixtures.-Proc. Roy. Soc.A247, 472–481.

    Google Scholar 

  • Wang, J. H. (1968). Facilitated Proton Transfer in Enzyme Catalysis.— Science161, 328–334.

    Google Scholar 

  • Weiss, J. J. (1964). Mechanism of Proton Transfer in Acid-Base Reactions.-J. Chem. Phys.41, 1120–1124.

    Google Scholar 

  • Wyman, J. (1968). Regulations in Macromolecules as Illustrated by Haemoglobin.-Quart. Rev. Biophys.1, 35–80.

    Google Scholar 

  • Yano, K., N. Higashi andK. Arima (1969). p-Hydroxybenzoate Hydroxylase: Conformational Changes in Crystals of Holoenzymesvs. Holoenzymesubstrate Complex.-Biochem. Biophys. Res. Comm.34, 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by NIGMS Training Grant No. GM 678-07.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, H.J. Proton tunneling and enzyme catalysis. Acta Biotheor 20, 29–40 (1971). https://doi.org/10.1007/BF01556967

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01556967

Keywords

Navigation