Skip to main content
Log in

Computational evaluation of ship manoeuvring performance based on scale model tests

  • Brief Note
  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Viene presentata una breve descrizione delle metodologie attuali più seguite per la identificazione di un modello matematico atto alla previsione delle caratteristiche di manovrabilità di una nave. Utilizzando coefficienti idrodinamici ricavati da prove su modelli in scala si è sviluppato un codice di calcolo che consente di ottenere la risposta della nave in alcune manovre standard quali quelle di evoluzione e zig-zag.

Summary

A brief review of the most important existing mathematical models for predicting the manoeuvring performance of a ship at the design stage is presented. A model based on the derivation of the hydrodynamic coefficients from force measurements on scale models is used to develop a computer program for the evaluation of the ship performance in some standard manoeuvres such as turning circle and zig-zag manoeuvres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

G :

Center of gravity

g :

Acceleration due to gravity

I ZZ :

Moment of inertia aboutz-axis

i EP :

Effective moment of inertia about propeller axis

L :

Length between perpendiculars

m :

Ship mass

N :

Hydrodynamic moment aboutz-axis

n :

Rate of revolutions of propeller

O :

Origin of shipbound coordinate system

Q :

Propeller torque

Q E :

Engine torque

q F :

Engine fuel rate

R T :

Total hull resistance

r :

Rate of turn aboutz-axis (yaw rate)

U :

Along-track velocity of0

u, v :

Components ofU alongx, y-axes

X, Y :

Hydrodynamic forces alongx, y-axes

x,y,z :

Shipbound coordinate axes

x G ,y G ,z G :

Coordinate of center of gravity in the shipbound system

x o,y 0,z 0 :

Coordinate of 0 in the earthbound system, Fig. 1

β :

Drift angle

δ:

Rudder angle

τ :

Characteristic time

ψ :

Heading angle

References

  1. Abkowitz M.A. Lectures on Ship Hydrodynamics-Steering and Manoeuvrability, Hydro and Aerodynamics Laboratory, Lyngby/Denmark, Report Hy-5, 1964.

    Google Scholar 

  2. Inoue S., Hirano M., Kijima K., Takashina J.,A Practical Calculation Method of Ship Manoeuvring Motion, International Shipbuilding Progress. Vol. 28, 1981, pp. 207–221.

    Google Scholar 

  3. Mikelis N., Taylor K.,Towards a Design Tool for Ship Manoeuvrability, Proc. 3rd Int. Congress on Marine Technology, Athens, Greece, Vol. 2, 1984, pp. 239–249.

    Google Scholar 

  4. Newman J.N.,Marine Hydrodynamics, The M.I.T. Press, Cambridge MA/USA, 1977.

    Google Scholar 

  5. Norrbin N.,Theory and Observations on the Use of a Mathematical Model for Ship Manoeuvring in Deep and Confined Water, Proc. 8th ONR Symposium on Naval Hydrodynamics, Pasadena CA/USA, 1970, pp. 807–904.

  6. Ogawa A., Kasai H.,On the Mathematical Model of Manoeuvring Motion of Ships, Int. Shipbuilding Progress. Vol. 25, 1978, pp. 306–319.

    Google Scholar 

  7. Oltmann P.,Sharma S.D.,Simulation of Combined Engine and Rudder Manoeuvres Using an Improved Model of Hull-Propeller-Rudder Interactions, Proc. 15th ONR Symposium on Naval Hydrodynamics, Hamburg, 1984.

  8. Santini P.,Eminente C.,Impostazione teorica del problema della stabilità e della manovrabilità per un corpo galleggiante, Rapporto Tecnico INSEAN 1985-23, 1985.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eminente, C., Coppola, C. Computational evaluation of ship manoeuvring performance based on scale model tests. Meccanica 25, 195–198 (1990). https://doi.org/10.1007/BF01556442

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01556442

Keywords

Navigation