Skip to main content
Log in

Experimental techniques for the determination of the dynamic responses of structures to wind

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si passano in rassegna i limiti ed i vantaggi di varie tecniche sperimentali attualmente disponibili per la determinazione degli effetti dinamici del vento sulle strutture. Si descrivono le principali cause dell'azione dinamica (cioè turbolenza, effetti scia e moto della struttura stessa), dando particolare attenzione alla natura e all'importanza delle forze indotte dal moto della struttura. Vengono anche brevemente discussi i requisiti e i compromessi che devono essere soddisfatti nella modellazione. Le tecniche discusse includono modelli aeroelastici di vari tipi, modelli rigidi con dinamometro alla base, misure di pressioni superficiali e misurazioni dirette delle forze indotte dal moto in modelli deformabili.

La tecnica del dinamometro alla base è un metodo rapido e di basso costo che fornisce dati in un tempo che permette lo sfruttamento dei risultati delle prove in galleria del vento nella progettazione, ma che ha serie limitazioni se le forze indotte dal moto sono significative o se la geometria della struttura o delle sue forme modali è complicata. Misure rapide della pressione esterna sono un metodo capace di affrontare complicate geometrie e forme modali, ma anche in questo caso è necessario fare attenzione al ruolo giocato dalle forze indotte dal moto. Per strutture che possono venir sottoposte a venti con velocità prossime alla cosiddetta “velocità critica”, è prevedibile che le forze indotte dal moto abbiano grande influenza; perciò in tali casi, il programma sperimentale dovrebbe includere prove aeroelastiche o la misura diretta di queste forze.

Summary

The paper reviews the limitations and advantages of various experimental techniques available for the determination of the dynamic effects of wind on structures. The prime causes of dynamic action (i.e. incident turbulence, wake effects and motion) are described with particular attention being given to the nature and importance of the forces induced by structural motion. Also discussed briefly are the modelling requirements and the compromises that must be made in the design of models. The techniques discussed include the use of aeroelastic models of various types, the base balance approach to the assessment of dynamic response, the use of surface pressure measurements and the direct measurement of motion-induced forces on vibrating models.

The base balance technique provides a rapid low-cost method which yields data within a time frame that permits integration of the wind tunnel data into the design process. The method does, however, have serious deficiencies if motion-induced forces are of significance or if the geometry of the structure or its mode shapes is unduly complex. High speed external pressure measurements offer a method capable of dealing with complex geometries and mode shapes but, again, care must be taken in regard to the role played by motion-induced forces. For structures expected to perform at wind speeds in the vicinity of the so-called “critical” speed, motion-induced forces are likely to be of great significance and aeroelastic testing or direct measurement of these forces should form part of the experimental program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Vickery B.J.,On the assessment of wind effects on elastic structures, Civ. Eng. Trans. Inst. Eng. Aust., 1966, pp. 183–192.

  2. Vickery B.J.On the reliability of gust-loading factors, Civil Eng. Trans., Inst. Eng. Aust., Vol. CE13, n. 1, 1971.

  3. Davenport A.G.,Gust Loading Factors, J. Struct. Div. Proc. A.S.C.E. Vol. 93, n. ST3, 1967.

  4. Velozzi J.Cohen E.,Gust response factors, J. Struct. Div., Proc. A.S.C.E., Vol. 94, n. ST6, 1968.

  5. Vickery B.J., Basu R.I.,Across-wind vibrations of structures of circular cross-section — Parts I and II, J. Wind Eng'g & Indust. Aero. Vol. 12, n. 1, 1983, pp. 49–97.

    Google Scholar 

  6. Novak M.,Aeroelastic Galloping of Prismatic Bodies, J. Eng. Mech. Div., Proc. A.S.C.E., Vol. 95, n. EMl, 1969.

  7. Parkinson G.V.,Wind-induced instability of structures, Phil. Trans. Royal Soc. London A, Vol. 269, 1971, pp. 321–554.

    Google Scholar 

  8. Tschanz T. Measurement of total dynamic loads using elasticmodels with high natural frequencies, in Ref. [11].

    Google Scholar 

  9. Davenport A.G.,The representation of the dynamic effects of turbulent wind by equivalent static loads, Proc. AISC/CISC Symposium on Structural Steel, Chicago U.S.A., May 1985.

  10. Steckley A.,Motion-induced Wind Forces on Chimneys and Tall Buildings, Ph. D. Thesis, The University of Western Ontario, London, Canada, June 1989.

    Google Scholar 

  11. Reinhold T.A. (editor)Wind Tunnel Modelling for Civil Engineering Applications, Proc. Int. Workshop on Wind Tunnel Modelling Criteria and Techniques in Civil Engineering Applications, Gaithersburg U.S.A., Cambridge University Press 1982.

    Google Scholar 

  12. Tryggvason B.V.,Aeroelastic modelling of pneumatic and tensioned fabric structures, Proc. 5th Int. Conf. on Wind Eng'g, Colorado, USA, Vol. 2, pp. 1061–1072, Pergamon Press 1979.

  13. Vickery B.J., Georgiou P.N.,A simplified approach to the determination of the influence of internal pressures on the dynamics of large span roofs, Proc. 8th Coll. on Indust. Aero., Vol. 1, pp. 169–180, Aachen, Germany, Sept. 1989.

    Google Scholar 

  14. Isyumov N.,Davenport A.G.,Monbaliu J.,CN Tower, Toronto — Model and full scale response to wind, Proc. 12th Congress IABSE, Vancouver, Canada, Sept. 1984.

  15. Steckley A.C., Lythe G., Isyumov N., Davenport A.G.,Aeroelastic wind tunnel model study of the new Bank of China Building, Hong Kong, BLWT-SS-85, The University of Western Ontario, Canada, January 1985.

    Google Scholar 

  16. King J.P.C. Davenport A.G.,A study of wind effects for the James River Bridge, Richmond, Virginia, BLWT-SS29-84, The University of Western Ontario, Canada, November 1984.

    Google Scholar 

  17. Vickery B.J., Steckley A.C., Ho E.,An investigation of wind loads and the wind-induced response of the roof of the Turin Stadium, BLWT-SS47-89, The University of Western Ontario, Canada, December 1989.

    Google Scholar 

  18. Davenport A.G., Tanaka H.,Aerodynamic study of tautstrip models in a turbulent boundary layer, BLWT Report n. 1–74, The University of Western Ontario, London, Canada, 1974.

    Google Scholar 

  19. Ukeguchi N.,Sakata H.,Nishitani H.,An investigation of aeroelastic instability of suspension bridges, Proc. Int. Symp. on Suspension Bridges, Lisbon, pp. 273–284 (1966).

  20. Vickery P.J.,Steckley A.,Isyumov N.,Vickery B.J.The effect of mode shape on the wind-induced response of tall buildings, Proc. 5th U.S. National Conference on Wind Engineering, Lubbock, Texas, pp. IB/41–48, November 1985.

  21. Holmes J.D.,Mode shape corrections for dynamic response to wind, Engineering Structures, Vol. 9, pp. 210–212, 1987.

    Google Scholar 

  22. Fujii K.,Hibi K.,Uead H.,Shimada K.Visualization of fluetuating pressure distribution on bluff body using electronically scanned pressure sensors, Inst. of Technology, Shimizu Construction, Tokyo, Japan (VIDEO TAPE).

  23. Gumley S.J.,A detailed design method for pneumatic tubing systems, J. Wind Eng'g & Industrial Aero., Vol. 13, n. 1, pp. 441–452, 1983.

    Google Scholar 

  24. Gumley S.J.,Tubing systems for the pneumatic averaging of fluctuating pressures, J. Wind Eng'g and Industrial Aero., Vol. 12, n. 2, pp. 189–228, 1983.

    Google Scholar 

  25. Letchford C.W.,On the discrete approximation in pneumatic averaging, Recent Advances in Wind Eng'g (Ed. T.F. Sun), Int. Academic Publishers, Beijing, Vol. 2, pp. 1159–67, June 1989.

    Google Scholar 

  26. Stathopoulos T.,Wind pressure loads on flat roofs, BLWT-3-75, The University of Western Ontario, London, Canada, 1975.

    Google Scholar 

  27. Draisey S.,The influence of wall openings on the dynamic behaviour of large span roofs, M. Eng. Sc. Thesis, The University of Western Ontario, London, Canada, May 1987.

    Google Scholar 

  28. Osborne C.,Wind loading on chimneys, B. Eng. Sc. Thesis, Univ. Western Ontario, London, Canada, March 1981.

    Google Scholar 

  29. Rosales M.B.,A novel technique for measuring spatially averaged pressures, M. Eng. Sc. Thesis, The University of Western Ontario, London, Canada, December 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vickery, B.J. Experimental techniques for the determination of the dynamic responses of structures to wind. Meccanica 25, 147–158 (1990). https://doi.org/10.1007/BF01556434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01556434

Keywords

Navigation